Appendix A

Notice of Preparation

Notice of Preparation of an Environmental Impact Report

- Date: February 9, 2015
- To: Responsible Agencies, Agencies with Jurisdiction by Law, Trustee Agencies, Involved Federal Agencies, and Agencies/People Requesting Notice
- From: County of Alameda Brian Laczko, Project Manager General Services Manager, Technical Services Division County of Alameda 1401 Lakeshore Drive, 8th Floor Oakland, CA 94612 Telephone: (510) 272-3753 Fax: (510) 208-3995 E-Mail: brian.laczko@acgov.org

Re: Notice of Preparation (NOP) of an Environmental Impact Report (EIR) for the Cherryland Community Center Project

The County of Alameda (Lead Agency) will prepare an EIR for the proposed Cherryland Community Center project (Project). This Notice of Preparation (NOP) is being distributed to applicable responsible agencies, trustee agencies, and interested parties as required by the California Environmental Quality Act (CEQA). Comments from agencies and interested parties are requested as to the scope and content of the environmental review in connection with the proposed Project. The Project location and project description are summarized below.

Project Location: The Project site is located at 278 Hampton Road (APN 413-35-010), 17482 Boston Road (APN 413-35-14-03), and the Meek Estate Park parking lot (APN 413-35-19-2) in the community of Cherryland in unincorporated Alameda County. The Community Center would be constructed on two parcels totaling 56,968 square feet or approximately 1.3 acres. The total Project area including the existing parking lot is approximately 2.2 acres. Figure 1 and 2 illustrate the regional and Project site location and boundaries.

The T-shaped Community Center site is bounded on the south by two-lane Hampton Road and on the west by Boston Road. The Project would also be located on the Meek Estate Park parking lot, a separate parcel, which is located and accessed from the end of the Boston Road cul-de-sac. Residential properties are located to the east, north, and west of the Community Center parcels and to the south of the Meek Estate Park parking lot parcel.

Proposed Project: The proposed Project involves the demolition of an existing structure and concrete pads on the Project site, construction of the new 17,500 square feet Cherryland Community Center, and reconfiguration and improvements to the existing

Meek Estate Park parking lot. Alameda County has partnered with Hayward Area Recreation & Park District (HARD) to design and construct the Cherryland Community Center. The facility would be owned by Alameda County and once construction is completed, HARD would be responsible for the ongoing programming, operations, and maintenance of the Cherryland Community Center.

The Project's expressed goal is to provide a gathering place and community focal point for local residents of all ages. The facility would include a lobby/reception gathering space area, a 5,000 square feet Community Event Room with adjoining courtyard and commercial kitchen, three (3) Multiple Activity Rooms, a Satellite Library, and additional space for pre-K facilities; all surrounded by active outdoor use areas and generous plantings. The Project would provide space for a number of uses including wedding receptions, lectures, performances, speaking engagements; yoga, art and exercise classes; reading programs, library and computer/technology access; and a diverse array of educational and recreational classes.

The Cherryland Community Center would be comprised of a single-story structure with wooden trusses, glazed windows with sun-screening, and a series of canopies would provide an open and bright sensibility to the spaces. The Project would include light monitors (windows located along the roof line), a hearth in the lobby, and morning and afternoon porches to create comfortable spaces for the community. Spaces within the building would frame views to a series of courtyards with intimate seating, Bay-Friendly plantings, and non-fruiting trees in reference to the nearby Meek Estate. The Project would include site lighting, stormwater treatment features, and accommodate fire and emergency access per County code. A site plan for the building is shown in Figure 3.

Access to the Project would be provided from Boston Road and Hampton Road. On-site parking for 20 automobiles would be provided on the Hampton Road parcel. Additional offsite parking for special events would be provided in the existing, re-configured Meek Estate Park parking lot, located north of the Community Center on Boston Road. This existing parking lot would be reconfigured as part of the proposed Project to provide parking for 104 vehicles and would provide enhanced pedestrian connections to the Community Center, providing a total of 124 spaces to accommodate the Project,. Additional improvements to the parking lot include installation of storm water treatment devices, screening for adjacent residential properties, improved site lighting, and pedestrian and vehicular circulation improvements.

Estimated Project construction is scheduled to start during the summer of 2015 and be completed by the fall of 2016.

Probable Environmental Effects: Based on the project description and the Lead Agency's understanding of the environmental issues associated with the Project, the following topics will be analyzed in the EIR, including: Aesthetics, Air Quality/Greenhouse Gases, Biological Resources, Cultural Resources, Geology and Soils, Hazards and Hazardous Materials, Hydrology and Water Quality, Land Use/Planning, Noise, Public Services and Recreation, Transportation/Traffic, and Utilities and Service Systems. No agricultural or mineral resources are located on the site and the Project would not generate an increase in population in the County; therefore, agricultural resources, mineral resources, and population and housing will be only briefly addressed in the EIR. The

specific alternative evaluated in the EIR will include the "No Project" alternative as required by CEQA.

NOP Notice: The Lead Agency solicits comments regarding the scope and content of the EIR from all interested parties requesting notice, responsible agencies, agencies with jurisdiction by law, trustee agencies, and involved agencies.

Comments should focus on discussion of possible impacts on the physical environment, ways in which potential adverse effects might be minimized, and alternatives to the Project in light of the EIR's purpose to provide useful and accurate information about such factors. In addition, comments may be provided at the meeting indicated below.

CEQA sets the review and comment period for an NOP to end 30 days after publication. The County therefore requests comments on this NOP be received no later than the close of business on March 11th, 2015. Send written comments to:

County of Alameda Brian Laczko, Project Manager General Services Manager, Technical Services Division County of Alameda 1401 Lakeshore Drive, 8th Floor Oakland, CA 94612 Telephone: (510) 272-3753 Fax: (510) 208-3995 E-Mail: <u>brian.laczko@acgov.org</u>

NOP Scoping Meeting: An NOP Scoping meeting will be held for the Project on Tuesday, February 24th, 2015 from 6:30-7:30 p.m. The meeting will be held at the Eden United Church of Christ, located at 21455 Birch Street, Hayward, CA, 94541.

ALL INTERESTED PARTIES ARE INVITED TO SUBMIT WRITTEN COMMENTS ON THE SCOPE OF THE EIR TO ASSIST IN IDENTIFYING ISSUES TO BE ADDRESSED IN THE EIR.

Χ_

Date: 2/9

Brian Laczko, Project Manager

G Cherryland Community Center Cherryland, CA

M

Figure 1 Regional and Project Location

G

Edmund G. Brown Jr. Governor

STATE OF CALIFORNIA Governor's Office of Planning and Research State Clearinghouse and Planning Unit

Notice of Preparation

February 9, 2015

To: Reviewing Agencies

Re: Cherryland Community Center SCH# 2015022038

Attached for your review and comment is the Notice of Preparation (NOP) for the Cherryland Community Center draft Environmental Impact Report (EIR).

Responsible agencies must transmit their comments on the scope and content of the NOP, focusing on specific information related to their own statutory responsibility, <u>within 30 days of receipt of the NOP from the Lead Agency</u>. This is a courtesy notice provided by the State Clearinghouse with a reminder for you to comment in a timely manner. We encourage other agencies to also respond to this notice and express their concerns early in the environmental review process.

Please direct your comments to:

Brian Laczko Alameda County 1401 Lakeshore Drive, 8th Floor Oakland, CA 94612

with a copy to the State Clearinghouse in the Office of Planning and Research. Please refer to the SCH number noted above in all correspondence concerning this project.

If you have any questions about the environmental document review process, please call the State Clearinghouse at (916) 445-0613.

Sincerely Mugan

Scott Morgan Director, State Clearinghouse

Attachments cc: Lead Agency RECEIVED COUNTY OF ALAMEDA

FEB 1 8 2015

GSA - TECHNICAL SEPARATE DEPARTMENT DESIGN AND CONCTAUCTION

Document Details Report State Clearinghouse Data Base

SCH# Project Title Lead Agency	2015022038 Cherryland Community Center Alameda County		
Туре	NOP Notice of Preparation		
Description	The proposed project involves the demolition of an existing structure and concrete pads on the project site, construction of the new 17,500 sf Cherryland Community Center, and the reconfiguration of the existing Meek Estate Park parking lot.		
Lead Agend	y Contact		
Name	Brian Laczko		
Agency	Alameda County		
Phone email	(510) 272-3753 Fax		
Address	1401 Lakeshore Drive, 8th Floor		
City	Oakland State CA Zip 94612		
Project Loc	ation		
County	Alameda		
City	Hayward		
Region			
Cross Streets	Boston Road/Hampton Road		
Lat / Long	37° 41' 03" N / 122° 06' 44" W		
Parcel No.	413-35-010, -14-03, and -19-2		
Township	Range Section Base		
Proximity to):		
Highways	I-580, I-880, I-238		
Airports			
Railways	BART, UPPR		
Waterways	San Lorenzo Creek		
Schools			
Land Use	Low-Medium Density Residential (LMDR), Parks (P)/Suburban Residential - Secondary Unit (RS-SU)		
Project Issues	Aesthetic/Visual; Agricultural Land; Air Quality; Archaeologic-Historic; Biological Resources; Drainage/Absorption; Flood Plain/Flooding; Geologic/Seismic; Minerals; Noise; Population/Housing Balance; Public Services; Recreation/Parks; Septic System; Sewer Capacity; Soil Erosion/Compaction/Grading; Solid Waste; Toxic/Hazardous; Traffic/Circulation; Vegetation; Water Quality; Water Supply; Wetland/Riparian; Growth Inducing; Landuse; Cumulative Effects		
Reviewing Agencies	Resources Agency; Department of Parks and Recreation; Department of Water Resources; Department of Fish and Wildlife, Region 3; Native American Heritage Commission; California Highway Patrol; Caltrans, District 4; Air Resources Board; Regional Water Quality Control Board, Region 2		
Date Received	02/09/2015 Start of Review. 02/09/2015 End of Revie:. 03/10/2015		

2015022038	Regional Water Quality Control Board (RWQCB)
ha sch#	Caltrans, District 8 Mark Roberts Caltrans, District 10 Tom Dumas Caltrans, District 11 Jacob Armstong Caltrans, District 11 Jacob Armstong Caltrans, District 11 Jacob Armstong Caltrans, District 12 Maureen El Harake Caltrans, District 12 Maureen El Harake Caltrans District 13 Maureen El Harake Caltrans District 13 Maren El Harake Caltrans District 14 Maren El Harake Caltrans District 13 Maren El Harake Al Other Projects Mike Tollstup Board Dept. of Toxic Substances Control Board Division of Water Resources Control Board Division of Water Resources Control Board Division of Water Resources Control Board Division of Water Resources Control Board Division of Water Rights Division of Water Rights Division of Water Rights Division of Water Rights Division of Water Rights Dept. of Toxic Substances Control Division of Water Rights Dept. Of Toxic Substances Control Centrol
D county: Klameda	 OES (Office of Emergency Services) Dennis Castrillo Native American Heritage Services) Debbie Treadway Public Utilities Public Utilities Commission Leo Wong Santa Monica Bay Restoration Gannyu Wang Santa Monica Bay Restoration Gannyu Wang Santa Monica Bay Restoration Gangyu Wang Santa Monica Bay Restoration Gannyu Wang Santa Monica Bay Restoration Gannyu Wang Santa Monica Bay Restoration Gangyu Wang Commission Call State Lands Commission Cal State Lands Commission Cal State Lands Commission Cal State Lands Commission Cal State Lands Commission Caltrans, District 1 Rex Jackman Caltrans, District 3 Caltrans, District 4 Caltrans, District 5 Lary Newland Caltrans, District 7
	Fish & Wildlife Region 1 Laurie Harnsberger Jeff Drongesen Jeff Drongesen Fish & Wildlife Region 3 Charles Armor Fish & Wildlife Region 4 Julie Vance Fish & Wildlife Region 5 Lavie Vance Fish & Wildlife Region 6 Julie Vance Fish & Wildlife Region 6 Julie Vance Habitat Conservation Program Program Program Pish & Wildlife Region 6 Program Conservation Program Pept. of Fish & Wildlife Region 6 Marine Region
NOP Distribution List	Resources Agency Nadell Gayou Bept. of Boating & Waterways Nicole Wong California Coastal Commission Elizabeth A. Fuchs Commission Elizabeth Carpenter Commission Elizabeth Carpenter Commission Environmental Stewardship Section Contral Valley Flood Protection Board James Herota Contral Valley Flood Protection Board James Herota Section Contral Valley Flood Protection Board James Herota Section

Appendix B

Arborist Report

Arborist Report

Site:

Cherryland Community Center

Prepared for: Brian Laczko

Prepared by: Ruben Vargas Certified Arborist #8240

11/1/13

TABLE OF CONTENTS

Introduction

- Scope of Report
- Property Overview

Assessment - Methodology and Summary of Conditions

- Assessment Criteria
- Tree Condition Overview
- Trees in Poor Condition
- Trees in Medium Condition
- Trees in Good to Excellent Condition

Assessment - Recommended Removals

Summation

Tree Protection Guidelines

Assessments - Individually by Tree

Tree Survey

Site Plan Sketch

Arborist Report County of Alameda

11/1/13

Brian Laczko County of Alameda 1400 Lakeside Dr #800 Oakland, CA 94612

Brian

I prepared the following Arborist report for Cherryland Community Center at Boston Road & Hampton Rd, Hayward, CA. I collected my data from the site 9/26/2013 and 10/28/13. For the purposes of this report, I assessed only trees above 9 inches in diameter.

The method I used to collect the data for this report was as follows:

- Inspected each tree listed
- Numerically assessed the condition on a scale from 1 (poor) to 5 (excellent)
- · Recorded a detailed assessment
- Affixed a numerically sequenced tag to each tree
- Located each tree by number

PROPERTY OVERVIEW

I was asked to assess the trees at Cherryland Community Center for proposed construction. I assessed 26 trees. The species of trees on site include California pepper, Plums, Privet, Birch, Acacia, Cypress and citrus and fruit. Trees #1 and #2 are located adjacent to proposed building sites A, B and C. If this open area is not subject to any construction activity, the trees in this area should be protected (protection guidelines attached) and their health monitored by a certified arborist during and after construction is completed. Trees #3 and #4 are recommended for removal due to decay and poor health. The balance of trees fall within the footprint of the construction site and should be removed.

Ruben Vargas H.

Ruben Vargas Arboricultural Specialties, Inc. Certified Arborist #8240

ASSESSMENT CRITERIA

For summary purposes, I've assessed the condition of each tree on a scale from I (poor) to 5 (excellent). In addition, I've provided a detailed assessment based on the following criteria:

• **Species:** Each species of tree has certain unique characteristics. Their growth patterns and physical attributes are significant components of their condition. In addition, certain species may be more susceptible to disease, insect infestation and structural problems.

• **Structure:** The structure of a tree is often the most important aspect of a tree's condition in regards to people and buildings. Poor structure can cause limb breakage and tree failure.

• **Diseases and Insects:** Different types of fungus, bacteria and insects are in continuous interaction with trees. Not all are bad; however they do play an important role in determining a trees condition.

• **Maturity:** Trees which have reached maturity are more susceptible to disease, insect infestation, and root damage from construction or other activity. They are more likely to have structures that have potential risk to people or buildings.

TREE CONDITION OVERVIEW

The following is a summary of all **26** trees on the property and their condition:

- 9 trees are in good to excellent condition (requiring little, if any service)
- 4 trees are in **medium** condition (requiring some service)
- 13 trees are in **poor** condition (should be serviced, removed, or replaced)

The average condition of trees on the property is 2.7 on a scale of 1 - 5.

TREES IN POOR CONDITION

The following **13** trees are assessed to be in poor condition and will need the most immediate attention.

TreeNumber	Species	ServiceRecommendation	Condition
4	Purple Leaf Plum	Remove	
5	Apricot	Remove	
7	Glossy Leaf Privit	Remove	I
8	Glossy Leaf Privit	Remove	1
10	Glossy Leaf Privit	Remove	I
6	Glossy Leaf Privit	Remove	2
12	Cherry Plum	Remove	2
13	Cherry Plum	Remove	2
14	Glossy Leaf Privit	Remove	2
15	Lemon	Remove	2
16	Glossy Leaf Privit	Remove	2
24	Leyland Cypress	Remove	2
25	Leyland Cypress	Remove	2

TREES IN MEDIUM CONDITION

The following 4 trees are assessed to be in medium condition and will need some attention.

TreeNumber	Species	ServiceRecommendation	Condition
	Apple	Remove	3
19	Lemon	Remove	3
20	Citrus	Remove	3
2I	Blackwood Acacia	Remove	3

TREES IN GOOD TO EXCELLENT CONDITION

The following **9** trees are assessed to be in good to excellent condition and may or may not need any attention.

TreeNumber	Species	ServiceRecommendation	Condition
<u> </u>	California Pepper	Service	4
2	California Pepper	Service	4
3	Glossy Leaf Privit	Remove	4
9	Blackwood Acacia	Remove	4
17	Silver Birch	Remove	4
18	Silver Birch	Remove	4
22	Avocado	Remove	4
23	California Pepper	Remove	4
26	Aristocrat Pear	Remove	4

TREES RECOMMENDED FOR REMOVAL

The following **24** trees are considered hazardous, diseased, detrimental to the health of other trees, or should otherwise be removed.

# 3	Glossy Leaf Privit	Remove	4
Removal	is necessary due to decay ar	nd weak attachment.	
# 4	Purple Leaf Plum	Remove	<u> </u>
Removal	is necessary due to poor he	alth.	
# 5	Apricot	Remove	<u> </u>
Removal construct		s location within the footprint of proposed	
# 6	Glossy Leaf Privit	Remove	2
Removal construct	•	s location within the footprint of proposed	
# 7	Glossy Leaf Privit	Remove	<u> </u>
Removal construct	•	s location within the footprint of proposed	
# 8	Glossy Leaf Privit	Remove	<u> </u>
Removal construct		s location within the footprint of proposed	
# 9	Blackwood Acacia	Remove	4
Removal construct		s location within the footprint of proposed	

#_10	Glossy Leaf Privit Remove	
Removal is construction	s necessary due to the trees location within the footprint of proposed on.	
# 11	Apple Remove	3
Removal is construction	s necessary due to the trees location within the footprint of proposed on.	
# 12	Cherry Plum Remove	2
Removal is constructi	s necessary due to the trees location within the footprint of proposed on	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# 13	Cherry Plum Remove	2
Removal is	s necessary due to the trees location within the footprint of proposed	
Removal is	s necessary due to the trees location within the footprint of proposed	
Removal is constructi # 14 Removal is	s necessary due to the trees location within the footprint of proposed on. <u>Glossy Leaf Privit</u> <u>Remove</u> s necessary due to the trees location within the footprint of proposed	
Removal is constructi # 14 Removal is	s necessary due to the trees location within the footprint of proposed on. <u>Glossy Leaf Privit</u> <u>Remove</u> s necessary due to the trees location within the footprint of proposed	2
Removal is construction # 14 Removal is construction # 15 Removal is	s necessary due to the trees location within the footprint of proposed on. <u>Glossy Leaf Privit</u> <u>Remove</u> s necessary due to the trees location within the footprint of proposed on. <u>Lemon</u> <u>Remove</u> s necessary due to the trees location within the footprint of proposed	2
Removal is construction # 14 Removal is construction # 15 Removal is	s necessary due to the trees location within the footprint of proposed on. <u>Glossy Leaf Privit</u> <u>Remove</u> s necessary due to the trees location within the footprint of proposed on. <u>Lemon</u> <u>Remove</u> s necessary due to the trees location within the footprint of proposed	2
Removal is construction # 14 Removal is construction # 15 Removal is construction # 16	s necessary due to the trees location within the footprint of proposed on. <u>Glossy Leaf Privit</u> Remove s necessary due to the trees location within the footprint of proposed on. <u>Lemon</u> Remove s necessary due to the trees location within the footprint of proposed on. <u>Glossy Leaf Privit</u> Remove s necessary due to the trees location within the footprint of proposed on.	2

# 18 Silver Birch 4 Remove Removal is necessary due to the trees location within the footprint of proposed construction. # 19 3 Remove Lemon Removal is necessary due to the trees location within the footprint of proposed construction. 3 # 20 Citrus Remove Removal is necessary due to the trees location within the footprint of proposed construction. 3 Blackwood Acacia Remove # 21 Removal is necessary due to the trees location within the footprint of proposed construction. 4 # 22 Avocado Remove Removal is necessary due to the trees location within the footprint of proposed construction. 4 # 23 California Pepper Remove Removal is necessary due to the trees location within the footprint of proposed construction. 2 Remove # 24 Leyland Cypress Removal is necessary due to the trees location within the footprint of proposed construction. Remove 2 # 25 Leyland Cypress Removal is necessary due to the trees location within the footprint of proposed construction. Assessment - Recommended Removals - 3

# 26	Aristocrat Pear	Remove	4
Removal i	s necessary due to the trees lo	ocation within the footprint of pro	posed
constructi	on.		

Arborist Report County of Alameda

#### **SUMMATION**

In conclusion, trees within the footprint of the proposed buildings should be removed while trees adjacent to the construction site should be protected and monitored by a certified arborist. Follow up site visits and tree maintenance should be completed annually upon completion of construction.

#### TREE PROTECTION - CONSTRUCTION GUIDELINES

- Tree protection fencing must be installed before any construction activity begins.
- Tree protection fencing will be installed, removed and repaired by on site Arborist only.
- Heavy equipment may not be operated within the 'drip line' of any tree.
- Injury to the trunks of the trees must be documented and repaired immediately.
- When tree roots are cut by necessity, roots 1" in diameter and greater must be sawcut and treated.
- Fill soil must be kept from under the 'drip line' of all trees.
- No storage or dumping of tools and building materials may exist within the drip line of any tree.
- No material of any kind may be stored within drip line of any tree.
- Original grade must be left undisturbed within the drip line of any tree.
- Only minor unauthorized pruning (pruning cuts under 1" in diameter) may be performed by contractors.
- Nothing may be tied around trees to act as an anchor, fulcrum, or any other function except demarcation of space with appropriate string.
- Any exposed roots must be covered with a mulch material.

*The term 'drip line' refers to the ground located directly below the outer edge of the canopy of the tree. In many cases the root system of a tree will go far beyond the 'drip line' suggesting that care should be taken when working in proximity, as well as underneath the 'drip line' of a tree.



Diameter

Height 30 feet Schinus molle Spread **35 feet**  Condition **** Recommend: Service

#### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

#### Structure

This tree has a co-dominant leader branching structure.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay. Cavities on one of two main leaders 4-5' from ground level

### **Observations**

The tree is leaning

### **Recommended Service**

Recommend thinning of overall canopy, removal of dead branches, and endweight removal.



Diameter 37 inches Height 25 feet Schinus molle Spread **30 feet**  # 2 Condition **** Recommend: Service

#### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

#### Structure

This tree has a single dominant leader branching structure.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay. Cavity approximately 4' from ground level (large branch was removed and tree is not healing properly)

# Observations

The tree is leaning toward the neighboring property. Black weed control plastic is within the drip line.

### **Recommended Service**

Recommend thinning of overall canopy, removal of dead branches, and endweight removal. Prune for safety by performing structural pruning. Remove plastic.

Diameter

Height 20 feet Ligustrum lucidum Spread I 5 feet # 3 Condition **** Recommend: Remove

#### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

#### Structure -

This tree has a co-dominant leader branching structure.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has some basal decay. There are signs of early-stage decay at the co-dominant junction.

### **Observations**

### **Recommended Service**

This tree should be removed. Removal is necessary due to decay and weak attachment.

# Purple Leaf Plum Prunus cerasifera

Diameter 25 inches Height 20 feet runus cerasifera Spread **20 feet** 



### Foliage

This tree has below average foliage. It shows no signs of disease or insect infestation.

#### Structure -

This tree has a co-dominant leader branching structure.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has some basal decay. There is a cavity.

### **Observations**

### **Recommended Service**

This tree should be removed. Removal is necessary due to poor health.



Height 20 feet Prunus Armeniaca _{Spread} 20 feet



### Foliage

This tree has below average foliage. It shows no signs of disease or insect infestation.

#### Structure -

This tree has a co-dominant leader branching structure. This tree has major branch failure.

### Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay.

### **Observations**

The tree is located next to a concrete slab.

### **Recommended Service**

Diameter

Height 25 feet Ligustrum lucidum Spread I **5 feet** 



#### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

#### Structure -

This tree has a co-dominant leader branching structure.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay.

# Observations

The tree is located next to a concrete slab. Black weed control plastic is within the drip line.

### **Recommended Service**

Diameter 44 inches Height 25 feet Ligustrum lucidum Spread 10 feet



#### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

#### **Structure**

This tree has a co-dominant leader branching structure. Weak co-dominant attachment

### Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay.

# Observations

The tree is located next to a concrete slab. Black weed control plastic is within the drip line.

### **Recommended Service**

Diameter 23 inches Height 25 feet Ligustrum lucidum Spread I **5 feet** 



#### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

#### Structure -

This tree has a co-dominant leader branching structure. This is a weak attachment.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay.

# Observations

The tree is located next to a concrete slab. Black weed control plastic is within the drip line.

### **Recommended Service**

# Blackwood Acacia Acacia melanoxylon,

Diameter 20 inches Height **45 feet**  Spread 30 feet # 9 Condition **** Recommend: Remove

#### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

#### Structure -

This tree has a single dominant leader branching structure. Trunk splits into 2 codominant leaders approximately 10' from the ground.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay.

#### **Observations**

### **Recommended Service**

Diameter 32 inches Height 25 feet Ligustrum lucidum Spread **20 feet**  # 10 Condition * Recommend: Remove

#### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

#### Structure -

This tree has a co-dominant leader branching structure. This is a weak codominant attachment.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay. Multi-trunked

### **Observations**

### **Recommended Service**


### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

### Structure -

This tree has a single dominant leader branching structure.

### Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay.

### **Observations**

The tree is surrounded by ivy.

### **Recommended Service**

# **Cherry Plum**

Diameter

Height **|5 feet**  Prunus cerasifera Spread **I5 feet**  # 2 Condition ** Recommend: Remove

### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

### Structure -

This tree has a co-dominant leader branching structure. Tthis is a weak attachment.

## Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay. The tree base is surrounded by ivy.

### **Observations**

### **Recommended Service**

# **Cherry Plum**

Diameter 9 inches Height **|5 feet**  Prunus cerasifera Spread **20 feet**  # 3 Condition ** Recommend: Remove

### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

### Structure -

This tree has a single dominant leader branching structure.

## Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay. The base is surrounded by ivy.

### **Observations**

### **Recommended Service**

# **Glossy Leaf Privit**

Diameter

Height 25 feet Ligustrum lucidum Spread 20 feet # 4 Condition ** Recommend: Remove

### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

### Structure -

This tree has a co-dominant leader branching structure.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay. Ivy and vine starting to grow on main trunk.

### **Observations**

### **Recommended Service**

Lemon	
Diameter	Height
9 inches	12 feet

Citrus Limon Spread 10 feet

# Condition * * **Recommend:** Remove

## Foliage

This tree has below average foliage. It shows no signs of disease or insect infestation.

### Structure -

This tree has a single dominant leader branching structure. there is major die-back.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay.

### **Observations**

### **Recommended Service**

# **Glossy Leaf Privit**

Diameter 9 inches Height 20 feet Ligustrum lucidum Spread **20 feet**  # 6 Condition ** Recommend: Remove

### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

### Structure -

This tree has a single dominant leader branching structure. The main trunk splits in two weakly attached co-dominant leaders approximately 4' from the ground.

## Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay.

### **Observations**

### **Recommended Service**

# **Silver Birch**

Diameter

Height 35 feet Betula Pendula Spread **20 feet**  # 17 Condition **** Recommend: Remove

### Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

### Structure -

This tree has a single dominant leader branching structure.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay. The base is surrounded with ivy.

### **Observations**

### **Recommended Service**

# **Silver Birch**

Diameter 22 inches Height 35 feet Betula Pendula Spread 25 feet # 8 Condition **** Recommend: Remove

## Foliage

This tree has average foliage. It shows no signs of disease or insect infestation.

### Structure -

This tree has a single dominant leader branching structure.

# Treebase

This tree shows no signs of mechanical damage, has good root flare, and has no basal decay.

### **Observations**

### **Recommended Service**





Appendix C

**Geotechnical Report** 



Prepared for County of Alameda

### FINAL REPORT GEOTECHNICAL INVESTIGATION PROPOSED CHERRYLAND COMMUNITY CENTER 278 HAMPTON ROAD/17482 BOSTON ROAD CHERRYLAND, CALIFORNIA

#### UNAUTHORIZED USE OR COPYING OF THIS DOCUMENT IS STRICTLY PROHIBITED BY ANYONE OTHER THAN THE CLIENT FOR THE SPECIFIC PROJECT

April 4, 2014 Project No. 13-590



April 4, 2014 Project No. 13-590

Mr. Brian Laczko, Architect Project Manager, GSA-TSD County of Alameda 1221 Oak Street Oakland, California 94612

Subject: Final Report Geotechnical Investigation Cherryland Community Center 278 Hampton Road/17482 Boston Road Cherryland, California

Dear Mr. Laczko,

Attached is our final geotechnical report, April 4, 2014, for the proposed Cherryland Community Center to be constructed in Cherryland, California. Our services were provided in accordance with our Professional Services Contract with the County of Alameda, dated September 17, 2013.

The project site is comprised of two adjacent parcels at 278 Hampton Road and 17482 Boston Road. The 278 Hampton Road parcel is relatively level and is currently a vacant lot with several mature trees. It is partly covered with asphalt concrete pavement and concrete pads associated with previous development on the site. Based on our review of historic photographs available on Google Earth, it appears three structures previously occupied the 278 Hampton Road site, including a residence in the front half of the site and two long rectangular structures in the rear half of the site. The 17482 Boston Road parcel slopes up very gently to the east and is currently occupied by a vacant 1- to 2-story residence with a small front and backyard.

Plans are to construct a 20,000-square-foot, one-story community center on the site. The currently proposed building layout consists of three buildings along the west and north sides of the 278 Hampton Road parcel and one building on the north side of the 17482 Boston Road parcel. We anticipate the buildings will be framed in wood or light-gauge metal and will have concrete slab-on-grade floors located near existing grades. Structural design loads were not available at the time this report was prepared; however, we expect the loads will be light as is typical for these types of structures. We anticipate



Mr. Brian Laczko, Architect County of Alameda April 4, 2014 Page 2

improvements on the remainder of the two parcels will include parking areas, concrete flatwork, new utilities, and landscaping.

From a geotechnical standpoint, we conclude the site can be developed as planned, provided the recommendations presented in this report are incorporated into the project plans and specifications and implemented during construction. The site is underlain by up to about 15 feet of sandy silt, silty sand, and sand. The upper sandy silt layer is susceptible to severe collapse when wetted under moderate loading. The underlying loose to medium dense sand and silty sand is susceptible to cyclic densification during a major earthquake, which will result in settlement of improvements supported at grade. Spread footing foundations bearing on the collapsible sandy silt in its existing condition may experience excessive static settlement due to wetting can be mitigated, however, by overexcavating and compacting the sandy silt. Therefore, we conclude the proposed buildings may be supported on spread footings bearing on recompacted soil (engineered fill). Specific recommendations for compaction of the engineered fill and other geotechnical aspects of the project are presented herein.

The recommendations contained in our report are based on a limited subsurface exploration. Consequently, variations between expected and actual subsurface conditions may be found in localized areas during construction. Therefore, we should be engaged to observe site grading and foundation installation during which time we may make changes in our recommendations, if deemed necessary.

We appreciate the opportunity to provide our services to you on this project. If you have any questions, please call.

Sincerely yours, ROCKRIDGE GEOTECHNICAL, INC.

. Chil



Craig S. Shields, P.E., G.E. Principal Geotechnical Engineer

Enclosure



### TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
2.0	SCO	PE OF WORK	2
3.0	FIEL 3.1 3.2 3.3 3.4	D INVESTIGATION Test Borings Cone Penetration Tests Laboratory Testing Infiltration Testing	3 4 4
4.0	SUBS	SURFACE CONDITIONS	5
5.0	SEIS: 5.1 5.2	MIC CONSIDERATIONS Regional Seismicity Geologic Hazards	6 9 9 9 10
6.0	DISC 6.1 6.2 6.3	USSION AND CONCLUSIONS Foundation Support and Settlement Construction Considerations Soil Corrosivity	12 13
7.0	REC0 7.1 7.2	OMMENDATIONS         Site Preparation and Grading         7.1.1       Fill Quality         7.1.2       Utility Trenches         7.1.3       Surface Drainage         Spread Footings       Spread Footings	14 15 15 16
	7.3 7.4	Concrete Slab-on-Grade FloorPavement Design7.4.1Flexible (Asphalt Concrete) Pavement Design7.4.2Rigid (Portland Cement Concrete) Pavement7.4.3Permeable Interlocking Concrete Pavers	17 19 19 19 20
	7.5	Seismic Design	
8.0	ADD	ITIONAL GEOTECHNICAL SERVICES	24



9.0	LIMITATIONS	24	1
-----	-------------	----	---

#### FIGURES

APPENDIX A – Logs of Test Borings and Cone Penetration Tests

APPENDIX B – Laboratory Test Data

APPENDIX C – Results of Liquefaction Analyses

### LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Regional Geologic Map
Figure 4	Regional Fault Map
Figure 5	Seismic Hazard Zone Map

### **APPENDIX** A

Figures A-1 through A-5	Logs of Borings B-1 to B-5
Figure A-6	Classification Chart
Figures A-7 and A-8	Cone Penetration Test Results, CPT-1 and CPT-2

### **APPENDIX B**

Figures B-1	Collapse Test Reports
through B-3	



#### GEOTECHNICAL INVESTIGATION PROPOSED CHERRYLAND COMMUNITY CENTER 278 HAMPTON ROAD/17482 BOSTON ROAD Cherryland, California

#### **1.0 INTRODUCTION**

This report presents the results of the geotechnical investigation performed by Rockridge Geotechnical, Inc. for the proposed Cherryland Community Center to be constructed in Cherryland, California. The site is located on the north side of Hampton Road between Boston Road and Standish Avenue, as shown on the Site Location Map (Figure 1).

The project site is comprised of two adjacent parcels at 278 Hampton Road and 17482 Boston Road. The 278 Hampton Road parcel is relatively level and is currently a vacant lot with several mature trees. It is partly covered with asphalt concrete pavement and concrete pads associated with previous development on the site. Based on our review of historic photographs available on Google Earth, it appears three structures previously occupied the 278 Hampton Road site, including a residence in the front half of the site and two long rectangular structures in the rear half of the site. The 17482 Boston Road parcel slopes up very gently to the east and is currently occupied by a vacant 1- to 2-story residence with a small front and backyard.

Plans are to construct a 20,000-square-foot, one-story community center on the site. The currently proposed building layout, which is shown on Figure 2, consists of three buildings along the west and north sides of the 278 Hampton Road parcel and one building on the north side of the 17482 Boston Road parcel. We anticipate the buildings will be framed in wood or light-gauge metal and will have concrete slab-on-grade floors located near existing grades. Structural design loads were not available at the time this report was prepared; however, we expect the loads will be light as is typical for these types of structures. We anticipate improvements on the remainder of the two parcels will include parking areas, concrete flatwork, new utilities, and landscaping.



#### 2.0 SCOPE OF WORK

Our geotechnical investigation was performed in accordance with our proposal dated September 13, 2013 and our Professional Services Contract with the County of Alameda, dated September 17, 2013. Our scope of services consisted of exploring subsurface conditions at the site by drilling five test borings and advancing two cone penetration tests (CPTs), and performing laboratory testing and engineering analyses to develop conclusions and recommendations regarding:

- site seismicity and seismic hazards, including the potential for liquefaction and lateral spreading, and total and differential settlement resulting from liquefaction and/or cyclic densification
- the most appropriate foundation type for the proposed structures
- design criteria for the recommended foundation type(s), including vertical and lateral capacities
- estimates of foundation settlement under static and seismic conditions
- site grading and excavation, including criteria for fill quality and compaction
- subgrade preparation for interior and exterior concrete slabs-on-grade
- corrosivity of the near-surface soil and the potential effects on buried concrete and metal structures and foundations
- flexible (asphalt concrete) and rigid (Portland cement concrete) pavement design
- 2013 California Building Code (CBC) site class and design spectral response acceleration parameters
- construction considerations.

#### 3.0 FIELD INVESTIGATION

Subsurface conditions at the site were explored by drilling five test borings and advancing two CPTs at the approximate locations shown on Figure 2. Prior to advancing the test borings and CPTs, we obtained a drilling permit from the Alameda County Public Works Agency (ACPWA). We also contacted Underground Service Alert (USA) to notify them of our work, as required by law and retained a private utility locator, Precision Locating, LLC, to confirm the borings and



CPT locations were clear of existing utilites. We also performed infiltration testing of the nearsurface at three locations selected by the project team to provide information for design of bioretention areas.

#### 3.1 Test Borings

Five test borings, designated as Borings B-1 through B-5, were drilled on November 20, 2013 by Exploration GeoServices of San Jose, California at the approximate locations shown on Figure 2. The borings were each drilled to a depth of 26-1/2 feet below the existing ground surface (bgs) using a truck-mounted drill rig equipped with eight-inch-diameter hollow-stem augers. During drilling, our field engineer logged the soil encountered and obtained representative samples for visual classification and laboratory testing. The boring logs are presented on Figures A-1 through A-5 in Appendix A. The soil encountered in the borings was classified in accordance with the classification chart presented on Figure A-6 in Appendix A.

Soil samples were obtained using the following samplers:

- Sprague and Henwood (S&H) split-barrel sampler with a 3.0-inch outside diameter and 2.5-inch inside diameter, lined with 2.43-inch inside diameter brass tubes.
- Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside and 1.5-inch inside diameter, without liners.

The samplers were driven with a 140-pound, downhole wireline hammer falling about 30 inches per drop. Dynamic testing performed on this hammer by GRL Engineers, Inc. on April 5, 2013 indicates the average energy transfer ratio for this hammer is 37 percent. The samplers were 18 inches at each sample depth and the hammer blows required to drive the samplers were recorded every six inches and are presented on the boring logs. A "blow count" is defined as the number of hammer blows per six inches of penetration or 50 blows for six inches or less of penetration. The blow counts required to drive the S&H and SPT samplers were converted to approximate SPT N-values using factors of 0.6 and 0.4, respectively, to account for sampler type and approximate hammer energy. The blow counts used for this conversion were the last two blow counts. The converted SPT N-values are presented on the boring logs.



Upon completion of drilling, the boreholes were backfilled with cement grout under the observation of the ACPWA inspector. The soil cuttings generated by the borings spread on the ground surface next to the borings.

#### **3.2** Cone Penetration Tests

Two CPTs, designated as CPT-1 and CPT-2, were performed to provide in-situ soil data at the approximate locations shown on Figure 2. John Sarmiento & Associates of Orinda, California advanced the CPTs on November 20, 2013, each to a depth of 50 feet bgs.

The CPTs were performed by hydraulically pushing a 1.4-inch-diameter cone-tipped probe with a projected area of 10 square centimeters into the ground. The cone-tipped probe measured tip resistance and the friction sleeve behind the cone tip measured frictional resistance. Electrical strain gauges within the cone continuously measured soil parameters for the entire depth advanced. Soil data, including tip resistance and frictional resistance, were recorded by a computer while the test was conducted. Accumulated data were processed by computer to provide engineering information such as the types and approximate strength characteristics of the soil encountered. The CPT logs, showing tip resistance and friction ratio by depth, as well as interpreted SPT N-values, soil shear strength parameters, and soil classifications, are presented in Appendix A on Figures A-7 and A-8. Upon completion, the CPTs were backfilled with cement grout.

#### 3.3 Laboratory Testing

We re-examined the soil samples obtained from our borings to confirm the field classifications and select representative samples for laboratory testing. Soil samples were tested to measure moisture content, dry density, fines content (i.e., particles passing the No. 200 sieve), collapse potential, corrosivity, and resistance value (R-value). The results of the laboratory tests are presented on the boring logs and in Appendix B.



#### 3.4 Infiltration Testing

To provide information on the infiltration rate (i.e., permeability) of the near-surface soil, we performed infiltration tests on March 7, 2014 at the three locations designated as I-1 through I-3 on Figure 2. The infiltration tests were performed at the bottom of two-foot-square test pits excavated to a depth of approximately two feet bgs. The soil exposed at the bottom of the test pits consisted of sandy silt with some clay at the I-1 and I-3 locations and silty sand at the I-2 location. To check whether a soil with higher permeability was present below the relatively low-permeability near-surface soil, we hand-augered a boring to a depth of seven feet bgs about five feet horizontally from the infiltration test locations. At all three locations, the soil type was relatively uniform to a depth of seven feet bgs.

We performed the infiltration tests using a 12-inch-diameter single-ring infiltrometer. The space between the test pit walls and the infiltrometer was filled with water to the same level as the water inside the infiltrometer to prevent seepage around the edge of the infiltrometer. The infiltration rate at the I-1 location ranged from about 0.3 to 1 inch/hour for the first 2-1/4 hours of the test while the soil below the test pit was being saturated; however, the rate slowed to essentially zero for the next hour (i.e., after saturation). At the I-3 location, the infiltration rate was terminated. At the I-2 location, the initial infiltration rate was as high as 7 inches/hour, but the rate gradually slowed as the soil became saturated. After about 2-1/2 hours, a steady infiltration rate of 1.9 inches per hour was measured.

#### 4.0 SUBSURFACE CONDITIONS

The project site, as shown on Figure 5, is underlain by Holocene-age (11,000 years old to recent) natural alluvial fan levee deposits associated with flooding of nearby San Lorenzo Creek. Our borings and CPTs indicate the site is blanketed by approximately 10 to 15 feet of slightly moist, medium stiff to stiff, non-plastic sandy silt and loose to medium dense sand and silty sand.



Laboratory collapse potential tests indicate the upper sandy silt layer is susceptible to severe collapse when saturated under moderate loading.

The sandy silt/silty sand is underlain by stiff to very stiff clay and sandy clay of low to moderate plasticity interbedded with occasional layers of medium dense to dense sand and silty sand. These sand and silty sand layers are generally thin (less than two feet thick), except at CPT-2, where dense sand was encountered between depths of 43 and 50 feet bgs, the maximum depth explored.

Groundwater was not encountered in the borings, which were each drilled to a depth of 26.5 feet bgs. Groundwater was measured at depths of approximately 30 and 27 feet bgs in CPT-1 and CPT-2, respectively. To estimate the depth of the historically high groundwater, we reviewed the publication by the California Geological Survey titled *Seismic Hazard Zone Report for the Hayward 7.5-Minute Quadrangle, Alameda County, California* (2003). According to Plate 1.2 in the report, the depth to the historically high groundwater in the immediate site vicinity is 20 feet bgs. We anticipate the depth to groundwater varies several feet seasonally, depending on rainfall amounts.

#### 5.0 SEISMIC CONSIDERATIONS

#### 5.1 Regional Seismicity

The site is located in the Coast Ranges geomorphic province of California that is characterized by northwest-trending valleys and ridges. These topographic features are controlled by folds and faults that resulted from the collision of the Farallon plate and North American plate and subsequent strike-slip faulting along the San Andreas Fault system. The San Andreas Fault is more than 600 miles long from Point Arena in the north to the Gulf of California in the south. The Coast Ranges province is bounded on the east by the Great Valley and on the west by the Pacific Ocean.



The major active faults in the area are the Hayward, San Andreas, Calaveras, and San Gregorio faults. These and other faults in the region are shown on Figure 4. For these and other active faults within a 50-kilometer radius of the site, the distance from the site and estimated mean characteristic Moment magnitude¹ [2007 Working Group on California Earthquake Probabilities (WGCEP) (USGS 2008) and Cao et al. (2003)] are summarized in Table 1.

Fault Segment	Approximate Distance from Site (km)	Direction from Site	Mean Characteristic Moment Magnitude
Total Hayward	2	Northeast	7.00
Total Hayward-Rodgers Creek	2	Northeast	7.33
Total Calaveras	15	East	7.03
Mount Diablo Thrust	20	Northeast	6.70
Green Valley Connected	26	Northeast	6.80
N. San Andreas – Peninsula	28	West	7.23
N. San Andreas (1906 event)	28	West	8.05
Monte Vista-Shannon	30	Southwest	6.50
Greenville Connected	33	East	7.00
San Gregorio Connected	38	West	7.50
N. San Andreas - North Coast	42	West	7.51
Great Valley 5, Pittsburg Kirby Hills	44	Northeast	6.70

TABLE 1Regional Faults and Seismicity

¹ Moment magnitude is an energy-based scale and provides a physically meaningful measure of the



Since 1800, four major earthquakes have been recorded on the San Andreas Fault. In 1836, an earthquake with an estimated maximum intensity of VII on the Modified Mercalli (MM) scale occurred east of Monterey Bay on the San Andreas Fault (Toppozada and Borchardt 1998). The estimated Moment magnitude, M_w, for this earthquake is about 6.25. In 1838, an earthquake occurred with an estimated intensity of about VIII-IX (MM), corresponding to an M_w of about 7.5. The San Francisco Earthquake of 1906 caused the most significant damage in the history of the Bay Area in terms of loss of lives and property damage. This earthquake created a surface rupture along the San Andreas Fault from Shelter Cove to San Juan Bautista approximately 470 kilometers in length. It had a maximum intensity of XI (MM), an M_w of about 7.9, and was felt 560 kilometers away in Oregon, Nevada, and Los Angeles. The most recent earthquake to affect the Bay Area was the Loma Prieta Earthquake of 17 October 1989 with an M_w of 6.9. This earthquake occurred in the Santa Cruz Mountains about 75 kilometers south of the site.

In 1868, an earthquake with an estimated maximum intensity of X on the MM scale occurred on the southern segment (between San Leandro and Fremont) of the Hayward Fault. The estimated  $M_w$  for the earthquake is 7.0. In 1861, an earthquake of unknown magnitude (probably an  $M_w$  of about 6.5) was reported on the Calaveras Fault. The most recent significant earthquake on this fault was the 1984 Morgan Hill earthquake ( $M_w = 6.2$ ).

The U.S. Geological Survey's (USGS) 2007 WGCEP has compiled the earthquake fault research for the San Francisco Bay area in order to estimate the probability of fault segment rupture. They have determined that the overall probability of moment magnitude 6.7 or greater earthquake occurring in the San Francisco Bay Region during the next thirty years is 63 percent. The highest probabilities are assigned to the Hayward/Rodgers Creek Fault and the northern segment of the San Andreas Fault. These probabilities are 31 and 21 percent, respectively (USGS 2008).

size of a faulting event. Moment magnitude is directly related to average slip and fault rupture area.



#### 5.2 Geologic Hazards

Because the project site is in a seismically active region, we evaluated the potential for earthquake-induced geologic hazards including ground shaking, ground surface rupture, liquefaction,² lateral spreading,³ and cyclic densification⁴. We used the results of our field investigation to evaluate the potential of these phenomena occurring at the project site.

#### 5.2.1 Ground Shaking

The ground shaking intensity felt at the project site will depend on: 1) the size of the earthquake (magnitude), 2) the distance from the site to the fault source, 3) the directivity (focusing of earthquake energy along the fault in the direction of the rupture), and 4) subsurface conditions. The site is about two kilometers from the Hayward Fault. Therefore, the potential exists for a large earthquake to induce strong to very strong ground shaking at the site during the life of the project.

#### 5.2.2 Ground Surface Rupture

Historically, ground surface displacements closely follow the trace of geologically young faults. The site is not within an Earthquake Fault Zone, as defined by the Alquist-Priolo Earthquake Fault Zoning Act, and no known active or potentially active faults exist on the site. We therefore conclude the risk of fault offset at the site from a known active fault is very low. In a seismically active area, the remote possibility exists for future faulting in areas where no faults previously existed; however, we conclude the risk of surface faulting and consequent secondary ground failure from previously unknown faults is also very low.

² Liquefaction is a phenomenon where loose, saturated, cohesionless soil experiences temporary reduction in strength during cyclic loading such as that produced by earthquakes.

³ Lateral spreading is a phenomenon in which surficial soil displaces along a shear zone that has formed within an underlying liquefied layer. Upon reaching mobilization, the surficial blocks are transported downslope or in the direction of a free face by earthquake and gravitational forces.

⁴ Cyclic densification is a phenomenon in which non-saturated, cohesionless soil is compacted by earthquake vibrations, causing ground-surface settlement.



#### 5.2.3 Cyclic Densification

Seismically induced compaction or cyclic densification of non-saturated sand (sand above the groundwater table) caused by earthquake vibrations may result in differential settlement. Based on the subsurface data from our field investigations, we conclude the sandy silty, silty sand and sand above the groundwater table is susceptible to cyclic densification during a major earthquake. With no recompaction of the upper five feet of soil, we estimate ground surface settlement of up to two inches could occur due to cyclic densification during a Magnitude 7.33 earthquake generating a peak ground acceleration (PGA) of 0.89 times gravity (g); this peak ground acceleration is consistent with the Maximum Considered Earthquake Geometric Mean (MCE_G) peak ground acceleration adjusted for site effects (PGA_M). If the upper five feet of soil is overexcavated and recompacted, as recommended in Section 6.1 below, we estimate total settlement would be less than ³/₄ inch over a horizontal distance of 30 feet. It should be noted the computed cyclic densification settlement for a Magnitude 7.33 earthquake and a PGA of 0.6g is less than ¹/₂ inch.

#### 5.2.4 Liquefaction and Associated Hazards

Liquefaction is a phenomenon in which saturated soil temporarily loses strength from the buildup of excess pore water pressure, especially during earthquake-induced cyclic loading. Soil susceptible to liquefaction includes loose to medium dense sand and gravel, low-plasticity silt, and some low-plasticity clay deposits. Flow failure, lateral spreading, differential settlement, loss of bearing strength, ground fissures and sand boils are evidence of excess pore pressure generation and liquefaction. We evaluated liquefaction potential at the site using the data collected in our CPTs. Our liquefaction analysis using CPT data was performed using methodology proposed by P.K. Robertson (2009).

As shown on Figure 5, the site has been mapped within a zone of liquefaction potential on the map titled *State of California, Sesimic Hazard Zones, Hayward Quadrangle, Official Map,* 



prepared by the Californa Geological Survey (CGS), dated July 2, 2003. Special Publication 117 by the California Geological Survey (2008) recommends subsurface investigations in mapped liquefaction potential areas be performed using rotary-wash borings and/or cone penetration tests.

Our analysis was performed using a groundwater depth of 20 feet bgs, which is consistent with the historically high groundwater for the site vicinity. In accordance with the 2013 CBC, we used a peak ground acceleration of 0.89 times gravity (g) in our liquefaction evaluation; this peak ground acceleration is consistent with the Maximum Considered Earthquake Geometric Mean (MCE_G) peak ground acceleration adjusted for site effects (PGA_M). We also used a Moment magnitude 7.33 earthquake, which is consistent with the mean characteristic Moment magnitude for the Hayward Fault, as presented in Table 1. A summary of the liquefaction analysis is presented in Appendix C of this report.

At the CPT-1 location, thin potentially liquefiable soil layers or lenses were encountered between depths of 23 and 48 feet feet bgs at the site. These layers are typically less than one foot thick. We estimate ground-surface settlement associated with post-liquefaction reconsolidation of these layers could be up to 0.6 inches. Our analysis indicates the potential for liquefaction to occur at the CPT-2 location is low. We estimate differential settlement associated with liquefaction could be up to ¼ inch over a horizontal distance of 30 feet.

Lateral spreading occurs when a continuous layer of soil liquefies at depth and the soil layers above move toward an unsupported face, such as a shoreline slope, or in the direction of a regional slope or gradient. Based on the discontinuous nature and depth of the potentially liquefiable layers, we conclude the potential for lateral spreading to occur at the project site is very low.



#### 6.0 DISCUSSION AND CONCLUSIONS

Based on the results of our geotechnical investigation, we conclude the proposed project can be developed as planned. The primary geotechnical concern is the presence of collapsible sandy silt blanketing the site. This and other geotechnical concerns are discussed in the following sections.

#### 6.1 Foundation Support and Settlement

The site is underlain by up to about 15 feet of sandy silt, silty sand, and sand. The upper sandy silt layer is susceptible to severe collapse when wetted under moderate loading. The underlying loose to medium dense sand and silty sand is susceptible to cyclic densification during a major earthquake, which will result in settlement of improvements supported at grade. Spread footing foundations bearing on the collapsible sandy silt in its existing condition may experience excessive static settlement when the soil is wetted from irrigation or other sources. The potential for settlement due to wetting can be mitigated, however, by overexcavating and compacting the sandy silt. Therefore, we conclude the proposed buildings may be supported on spread footings bearing on recompacted soil (engineered fill). The engineered fill should extend at least five feet below the existing ground surface. Recommendations for engineered fill quality and compaction are presented in Section 7.1.

Our settlement analyses indicate total settlement of spread footings bearing on engineered fill, designed using the allowable bearing pressures presented in Section 7.2 of this report, will be on the order of ½ inch and differential settlement will be less than ¼ inch over a 30-foot horizontal distance. An additional two inches of total settlement and one inch of differential settlement over a horizontal distance of 30 feet may occur due to a combination of cyclic densification and post-liquefaction reconsolidation during the Maximum Credible Earthquake (i.e., PGA of 0.89g). During a Magnitude 7.33 earthquake generating a PGA of 0.6g, the estimated seismically induced total settlement is less than one inch and the differential settlement is about ½ inch over a horizontal distance of 30 feet.

12



#### 6.2 Construction Considerations

The soil to be excavated for the new foundations and underground utilities is expected to be predominantly sandy silt, which is highly susceptible to "pumping" (i.e., excessive deflection under wheel loads) when compacted at a high moisture content. If site grading is performed during the rainy season, the sandy silt will likely have to be dried before compaction can be achieved. Heavy rubber-tired equipment could cause pumping of the sandy silt and, therefore, should be avoided if grading occurs during the rainy season.

Excavations that will be deeper than five feet and will be entered by workers should be sloped or shored in accordance with CAL-OSHA standards (29 CFR Part 1926). The contractor should be responsible for the construction and safety of temporary slopes.

#### 6.3 Soil Corrosivity

Corrosivity testing was performed by Sunland Analytical of Rancho Cordova, California on a sample of soil obtained during our field investigation from a depth of 3 feet bgs. The results of the test are presented in Appendix B of this report. Based on the resistivity test results, the sample would be classified as moderately corrosive to buried steel, which is typical of fine-grained soil. Accordingly, buried iron, steel, cast iron, galvanized steel, and dielectric-coated steel or iron should be properly protected against corrosion. The results indicate that sulfate ion concentrations are insufficient to damage reinforced concrete structures below ground, and the chloride concentration of the soil does not present a problem with reinforcing steel in buried concrete structures.



#### 7.0 RECOMMENDATIONS

Our recommendations for site preparation and grading, design of foundations, and other geotechnical aspects of the project are presented in this section.

#### 7.1 Site Preparation and Grading

Site clearing should include removal of all existing foundations, slabs, pavements, and underground utilities. Any vegetation and the upper 3 to 4 inches of organic topsoil should be stripped in areas to receive improvements. Tree roots with a diameter greater than 1/2 inch within three feet of subgrade should also be removed. Removed asphalt concrete and concrete should be taken to a recycling facility.

After site clearing is completed, the proposed building pads should be excavated to a depth of at least five feet below existing site grades and at least three feet below the bottom of proposed footings, whichever is deeper. If the embedment depth of a particular footing results in an overexcavation deeper than five feet below existing site grades, the three-foot overexcavation beneath that footing can be limited to an area extending beneath and three feet beyond the edges of the footing.

Any areas to receive pavement or concrete flatwork, including sidewalks, should be excavated to at least three feet below existing grades. The excavations should extend at least five feet beyond the perimeters of the proposed buildings and at least three feet beyond the edges of pavement and flatwork, except where constrained by property lines or existing utilities. The exposed subgrade at the base of the excavations should be scarified to a depth of at least eight inches, moisture-conditioned to above optimum moisture content, and compacted to at least 92 percent relative compaction⁵. The excavated material should then be placed in lifts not exceeding eight inches in

⁵ Relative compaction refers to the in-place dry density of soil expressed as a percentage of the maximum dry density of the same material, as determined by the ASTM D1557 laboratory compaction procedure.



loose thickness, moisture-conditioned to above optimum moisture content, and compacted to at least 92 percent relative compaction.

Subgrade soil consisting of clean sand or gravel (defined as soil with less than 10 percent fines by weight) should be compacted to at least 95 percent relative compaction. Soil subgrade for vehicular pavements should be compacted to at least 95 percent relative compaction and be nonyielding. The soil subgrade should be kept moist until it is covered by fill for improvements.

#### 7.1.1 Fill Quality

Material excavated at the site will primarily consist of non-plastic sandy silt and silty sand that may be reused as fill, provided it is free or organic matter and contain no rocks or lumps greater than three inches in greatest dimension. If imported fill (select fill) is required, it should be free of organic matter, contain no rocks or lumps larger than three inches in greatest dimension, have a liquid limit less than 40 and plasticity index less than 12, and be approved by the Geotechnical Engineer. Samples of proposed select fill material should be submitted to the Geotechnical Engineer at least three business days prior to use at the site. The grading contractor should provide analytical test results or other suitable environmental documentation indicating the imported fill is free of hazardous materials at least three days before use at the site. If this data is not available, up to two weeks should be allowed to perform analytical testing on the proposed imported material.

#### 7.1.2 Utility Trenches

Excavations for utility trenches can be readily made with a backhoe. All trenches should conform to the current CAL-OSHA requirements. Excavations in areas where recompacted fill is placed should stand vertically. For trenches excavated outside the recompacted fill areas, we anticipate that some caving may occur in the relatively dry sandy silt.

Backfill for utility trenches and other excavations is also considered fill, and it should be compacted according to the recommendations presented in Section 7.1. Jetting of trench backfill



should not be permitted. Special care should be taken when backfilling utility trenches in pavement areas. Poor compaction may cause excessive settlements, resulting in damage to the pavement section.

To provide uniform support, pipes or conduits should be bedded on a minimum of four inches of sand or fine gravel. After the pipes and conduits are tested, inspected (if required) and approved, they should be covered to a depth of six inches with sand or fine gravel, which should be mechanically tamped.

Foundations for the proposed buildings should be bottomed below an imaginary line extending up at a 1.5:1 (horizontal to vertical) inclination from the base of utility trenches. Alternatively, the portion of the utility trench (excluding bedding) that is below the 1.5:1 line can be backfilled with controlled low-strength material (CLSM) with a 28-day unconfined compressive strength of at least 100 pounds per square inch (psi).

#### 7.1.3 Surface Drainage

Positive surface drainage should be provided around the buildings to direct surface water away from the foundations. To reduce the potential for water ponding adjacent to the buildings, we recommend the ground surface within a horizontal distance of five feet from the buildings slope down away from the buildings with a surface gradient of at least two percent in unpaved areas and one percent in paved areas. In addition, roof downspouts should be discharged into controlled drainage facilities to keep the water away from the foundations. Bioretention/treatment areas within five feet of the buildings should be lined with an impermeable membrane at least 10 mils thick, such as Stegowrap, and provided with a subdrain.

#### 7.2 Spread Footings

We conclude the proposed buildings may be supported on continuous or individual spread footings bottomed on properly compacted fill. Continuous footings should be at least 12 inches wide and isolated spread footings should be at least 18 inches wide. Footings should extend at



least 18 inches below the lowest adjacent exterior finished grade and at least 12 inches below the lowest adjacent interior soil subgrade, whichever is lower. Footings should also be founded below an imaginary line extending up at an inclination of 2:1 from bioretention/treatment areas.

The footings may be designed using allowable bearing pressures of 3,000 pounds per square foot (psf) for dead-plus-live loads and 4,000 psf for total design loads, which include wind or seismic forces. The allowable bearing pressures include factors of safety of at least 2.0 and 1.5, for static and transient loading conditions, respectively.

Lateral loads may be resisted by a combination of passive pressure on the vertical faces of the footings and friction between the bottoms of the footings and the supporting soil. To compute passive resistance, we recommend using an equivalent fluid weight of 300 pounds per cubic foot (pcf). The upper foot of soil should be ignored unless confined by a slab or pavement. Frictional resistance should be computed using a base friction coefficient of 0.35. These values may be used in combination without reduction. The passive pressure and frictional resistance values include a factor of safety of at least 1.5.

Footing excavations should be free of standing water, debris, and disturbed materials prior to placing concrete. The bottoms and sides of the footing excavations should be moistened following excavation and maintained in a moist condition until concrete is placed. We should check footing excavations prior to placement of reinforcing steel.

#### 7.3 Concrete Slab-on-Grade Floor

Where water vapor transmission through the floor slab is undesirable, we recommend installing a capillary moisture break and a water vapor retarder beneath the slab. A capillary moisture break consists of at least four inches of clean, free-draining gravel or crushed rock. The vapor retarder should meet the requirements for Class B vapor retarders stated in ASTM E1745. The vapor retarder should be placed in accordance with the requirements of ASTM E1643. These requirements include overlapping seams by six inches, taping seams, and sealing penetrations in the vapor retarder. *If required by the structural engineer*, the vapor retarder may be covered with



two inches of sand to aid in curing the concrete and to protect the vapor retarder during slab construction. The sand overlying the vapor retarder should be moist at the time concrete is placed. However, excess water trapped in the sand could eventually be transmitted as vapor through the slab. Therefore, if rain is forecast prior to pouring the slab, the sand should be covered with plastic sheeting to avoid wetting. If the sand becomes wet, concrete should not be placed until the sand has been dried or replaced.

The particle size of the capillary break material and sand (if used) should meet the gradation requirements presented in Table 2 below.

Sieve Size	Percentage Passing Sieve	
Gravel or Crushed Rock		
1 inch	90 - 100	
3/4 inch	30 - 100	
1/2 inch	5 – 25	
3/8 inch	0-6	
Sand		
No. 4	100	
No. 200	0 – 5	

 TABLE 2

 Gradation Requirements for Capillary Moisture Break

Concrete mixes with high water/cement (w/c) ratios result in excess water in the concrete, which increases the cure time and results in excessive vapor transmission through the slab. Therefore, concrete for the floor slab should have a low w/c ratio - less than 0.50. If necessary, workability should be increased by adding plasticizers. In addition, the slab should be properly cured. Before floor coverings, if any, are placed, the contractor should check that the concrete surface and the moisture emission levels (if emission testing is required) meet the manufacturer's requirements.



#### 7.4 Pavement Design

#### 7.4.1 Flexible (Asphalt Concrete) Pavement Design

The State of California flexible pavement design method was used to develop the recommended asphalt concrete pavement sections. For AC pavement design, we used an R-value of 19. Recommended pavement sections for traffic indices ranging from 4.5 to 5.5 are presented in Table 3.

Traffic Index	Asphaltic Concrete (inches)	Class 2 Aggregate Base R = 78 (inches)
4.5	2.5	7.0
5.0	3.0	7.5
5.5	3.0	9.0

 TABLE 3

 Recommended AC Pavement Sections

The upper six inches of the subgrade should be moisture-conditioned and compacted in accordance with requirements presented in Section 7.1. The aggregate base should be moisture conditioned to near optimum and compacted to at least 95 percent relative compaction.

To prevent irrigation water from entering the pavement section, curbs adjacent to landscaped areas should extend through the aggregate base and at least three inches into the underlying soil subgrade.

#### 7.4.2 Rigid (Portland Cement Concrete) Pavement

Concrete pavement design is based on a maximum single-axle load of 20,000 pounds and a maximum tandem axle load of 32,000 pounds and light truck traffic (i.e., a few trucks per week). The recommended rigid pavement section for these axle loads is six inches of Portland cement concrete over six inches of Class 2 aggregate base.


The modulus of rupture of the concrete should be at least 500 psi at 28 days. Contraction joints should be constructed at 15-foot spacing. Where the outer edge of a concrete pavement meets asphalt concrete pavement, the concrete slab should be thickened by 50 percent at a taper not to exceed a slope of 1 in 10. For areas that will receive weekly garbage truck traffic, we recommend the slab be reinforced with a minimum of No. 4 bars at 16-inch spacing in both directions. Recommendations for subgrade preparation and aggregate base compaction for concrete pavement are the same as those we have described above for asphalt concrete pavement.

### 7.4.3 Permeable Interlocking Concrete Pavers

We recommend permeable interlocking concrete pavements (ICP) be designed in accordance with the guidelines presented by the Interlocking Concrete Pavement Institute (ICPI 2005). These guidelines include specific recommendations for permeable aggregate subbase, base, and bedding courses to be placed beneath ICP pavements. Based on the infiltration tests and soil gradation, we estimate the recompacted on-site soil will have an infiltration rate ranging from less than 0.1 inches per hour up to about 2 inches per hour where silty sand is exposed at pavement subgrade elevation. Therefore, we recommend permeable pavers be designed for *partial* exfiltration of water into the subgrade soil. This requires installing a subdrain system at the base of the pervious aggregate materials, which are underlain by an filter fabric. ICPI's generalized paver section partial exfiltration is presented on Figure 6. If the permeable pavers will be subjected to vehicular traffic, we recommend the geotextile shown on Figure 6 be replaced with a Tensar TriAx TX7 geogrid to mitigate the potential for rutting of the subgrade.

The soil subgrade beneath ICP pavements should be prepared and compacted in accordance with the recommendations presented in Section 7.1. In addition, the subgrade should be a firm and non-yielding surface. The subgrade should be proof-rolled under the observation of our field engineer to confirm it is non-yielding prior to placing the filter fabric and aggregate base materials. The soil subgrade at the bottom of the permeable section should slope down toward the drain pipe trench at a gradient of at least two percent. The perforated pipe should slope down



to a suitable outlet at a minimum gradient of one percent. The pipe should be placed with the perforations down on a minimum of two inches of permeable subbase.

ICPI's guidelines call for 1-1/2 to 2 inches of bedding material consisting of ASTM No. 8 aggregate directly below the pavers. This material is also recommended for fill material between the pavers. As shown in Table 4 below, this material consists of fine gravel with 10 to 30 percent sand.

Sieve Size	Percentage Passing Sieve
1/2 inch	100
3/8 inch	85 - 100
No. 4	10 - 30
No. 8	0 – 10
No. 16	0 – 5

 TABLE 4

 Gradation Requirements for ASTM No. 8 Aggregate

The ASTM No. 8 bedding should be underlain by a permeable base course of ASTM No. 57 crushed aggregate. As shown in Table 5, ASTM No. 57 aggregate consists of open-graded gravel with a gradation between that of the 3/4-inch drain rock and the ASTM No. 8 aggregate.

TABLE 5Gradation Requirements for ASTM No. 57 Aggregate

Sieve Size	Percentage Passing Sieve
1-1/2 inch	100
1 inch	95 - 100
1/2 inch	25 - 60
No. 4	0 – 10
No. 8	0 – 5



The ASTM No. 57 permeable base course should be underlain by a permeable subbase course of ASTM No. 2 crushed aggregate. The gradation requirements for ASTM No. 2 crushed aggregate subbase are presented in Table 6.

Sieve Size	Percentage Passing Sieve
3 inch	100
2-1/2 inch	90-100
2 inch	35-70
1-1/2 inch	0-15
3/4 inch	0 -5

TABLE 6Gradation Requirements for ASTM No. 2 Aggregate

The No. 2 aggregate subbase course should be placed in lifts not exceeding 6 inches in loose thickness and compacted using a smooth-drum roller, operated in static (non-vibratory) mode. The subsequent course of No. 57 aggregate may be placed in one lift and should be compacted with a smooth-drum roller in vibratory mode with sufficient passes to create an unyielding surface. Placement and compaction of the permeable aggregate base and subbase should be performed under the observation of our field engineer. Following compaction of the No. 57 aggregate, the No. 8 bedding, not exceeding 2 inches in loose thickness, should be placed and screeded to a level, undisturbed surface immediately prior to paver installation.

The required thicknesses of the permeable aggregate base and subbase courses depends on the infiltration and water storage design requirements, as well as the traffic loading demand. Our recommendations for the minimum permeable ICP pavement section for pedestrian traffic are presented in Table 7.



Pavement Type	ASTM No. 8 Bedding Aggregate (inches)	ASTM No. 57 Stone Base (inches)	ASTM No. 2 Stone Subbase (inches)
Pedestrian	1.5-2.0	4.0	6.0
Vehicular	1.5-2.0	4.0	10.0

# TABLE 7Recommended Pavement Sections forPermeable Interlocking Concrete Pavers

The above recommended ICP pavement section is based on the ICPI technical guidelines (ICPI 2005). From a geotechnical standpoint, it is acceptable to design the pedestrian ICP section to exclude the No. 2 subbase course, in which case the No. 57 base course should be increased to 10 inches. From a geotechnical standpoint, it is also acceptable to use compacted structural planting mix in lieu of the No. 57 and No. 2 base courses in locations where the pedestrian ICP section is adjacent to tree wells and is required for promoting root growth. If either of these approaches are used, the perforated pipe should include a filter fabric sleeve to prevent the finer aggregate or organic material from entering the perforations.

### 7.5 Seismic Design

We understand the proposed buildings will be designed using the 2013 CBC. For design in accordance with the 2013 CBC, we recommend Site Class D be used. The latitude and longitude of the site are 37.68432 and -122.11197, respectively. Hence, in accordance with the 2013 CBC, we recommend the following:

- $S_S = 2.306g, S_1 = 0.957g$
- $S_{MS} = 2.306g, S_{M1} = 1.436g$
- $S_{DS} = 1.537g, S_{D1} = 0.957g$
- $PGA_M = 0.886g$
- Seismic Design Category D for Risk Categories I, II and III.



### 8.0 ADDITIONAL GEOTECHNICAL SERVICES

Prior to construction, Rockridge Geotechnical should review the project plans and specifications to verify that they conform to the intent of our recommendations. During construction, our field engineer should provide on-site observation and testing during site preparation, placement and compaction of fill, and installation of building foundations. These observations will allow us to compare actual with anticipated subsurface conditions and to verify that the contractor's work conforms to the geotechnical aspects of the plans and specifications.

### 9.0 LIMITATIONS

This geotechnical study has been conducted in accordance with the standard of care commonly used as state-of-practice in the profession. No other warranties are either expressed or implied. The recommendations made in this report are based on the assumption that the subsurface conditions do not deviate appreciably from those disclosed in the exploratory borings and CPTs. If any variations or undesirable conditions are encountered during construction, we should be notified so that additional recommendations can be made. The foundation recommendations presented in this report are developed exclusively for the proposed development described in this report and are not valid for other locations and construction in the project vicinity.



### REFERENCES

Cao, T., Bryant, W. A., Rowshandel, B., Branum D. and Wills, C. J. (2003). The Revised 2002 California Probabilistic Seismic Hazard Maps.

California Division of Mines and Geology (1996). Probabilistic Seismic Hazard Assessment for the State of California, DMG Open-File Report 96-08.

California Geological Survey (2007). Fault-Rupture Hazard Zones in California, Special Publication 42, Interim Revision 2007.

California Geological Survey (2008). Guidelines for Evaluating and Mitigating Seismic Hazards in California, Special Publication 117.

California Geological Survey (2003). State of California Seismic Hazard Zones, Hayward Quadrangle, Official Map.

California Geological Survey (2003). State of California Seismic Hazard Zones, San Leandro Quadrangle, Official Map.

Jennings, C.W. (1994). Fault Activity Map of California and Adjacent Areas with Locations and Ages of Recent Volcanic Eruptions: California Division of Mines and Geology Geologic Data Map No. 6, scale 1: 750,000.

Robertson, P.K. (2009). "Performance based earthquake design using the CPT", Keynote Lecture, International Conference on Performance-based Design in Earthquake Geotechnical Engineering – from case history to practice, IS-Tokyo, June 2009.

Robertson, P.K. (2009). "Interpretation of Cone Penetration Tests - A Unified Approach", Canadian Geotechnical Journal, Vol. 46, No. 11, pp 1337-1355.

U.S. Geological Survey (2008). The Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2): prepared by the 2007 Working Group on California Earthquake Probabilities, U.S. Geological Survey Open File Report 2007-1437.

Zhang, G., Robertson. P.K., Brachman, R., (2002). "Estimating Liquefaction Induced Ground Settlements from the CPT", Canadian Geotechnical Journal, 39: pp 1168-1180.



FIGURES





CPT-HA-1 φ

						HA-1 🖶	)PT-1 🔶	B-1 🔶	
Date 04/03/14 Project No. 13-590 Figure 2 ROCKRIDGE REGEOTECHNICAL	278 HAMPTON ROAD/17482 BOSTON ROAD Cherryland, California SITE PLAN	CHERRYI AND COMMINITY CENTER	7-	Proposed building	Approximate location of infiltration test by Rockridge Geotechnical, March 2014	Approximate location of sample for R-value and corrosivity tests	Approximate location of cone penetration test by Rockridge Geotechnical, November 2013	Approximate location of boring by Rockridge Geotechnical, November 2013	EXPLANATION









Reference: "Permeable Interlocking Concrete Pavements", Third Edition, prepared by Interlocking Concrete Pavement Institute, dated 2005.

CHERRYLAND COMMUNITY CENTER 278 HAMPTON ROAD/17482 BOSTON ROAD Cherryland, California	GENERALIZED ICPI PERMEABLE PAVER DETAIL - PARTIAL EXFILTRATION
<b>C</b> ROCKRIDGE	
<b>GEOTECHNICAL</b>	Date 12/17/13 Project No. 13-590 Figure 6



### APPENDIX A Logs of Test Borings and Cone Penetration Tests

PRO	JEC.	T:	27			L Cherryland, California	_og (	of	Bor	ing		AGE 1	OF 1	
Boring	g loca	tion:	S	ee Si	te Pla	an, Figure 2			Logged	d by:	R. For	d		
Date s				1/20/		Date finished: 11/20/13								
Drilling														
Samp		-				30 inches Hammer type: Safety (downhole) d (S&H), Standard Penetration Test (SPT)				LABOF	RATOR	Y TEST	DATA	
Samp		SAMF	-						гч	D e t	ngth T		_ 0%	ity
DEPTH (feet)	Sampler Type	Sample	9	SPT N-Value ¹	ГІТНОГОĞY	MATERIAL DESCRIPTION			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1 — 2 — 3 — 4 —	S&H SPT S&H		8 6 3 3 4 6 7	5 4 5		One-inch asphalt concrete SANDY SILT (ML) brown to light brown, medium stiff, slightly mois Collapse Test, see Figure B-1	st					63	13.5 13.5	82 97
5 — 6 — 7 — 8 — 9 —			,		ML		SITS							
10 — 11 — 12 — 13 — 14 —	S&H		9 11 12	10		SAND (SP) yellow-brown, medium dense CLAY with SAND (CL) brown to yellow-brown, stiff, moist, some grave	LEVEE DEPOSITS						11.3	107
15 — 16 — 17 — 18 — 19 —	SPT		5 7 8	9	CL	medium plasticity, less sand and gravel							26.8	
20 — 21 — 22 — 23 —	SPT		7 9 13	13	CL	SANDY CLAY with GRAVEL (CL) dark gray to black, very stiff, moist, fine gravel							15.5	
24 — 25 — 26 — 27 — 28 —	SPT		6 9 12	13	СН	CLAY (CH) light brown, yellow-brown, light gray mottled, ve stiff, moist	Ļ	-					23.6	
20 -														
								_						
surfac Boring	g backfi	lated at a lied with	ceme	nt grou	t.	¹ S&H and SPT blow counts for the last two incr converted to SPT N-Values using factors of 0. respectively to account for sampler type and f ing.	.4 and 0.6,		Project N	R.:		CKRII DTECI Figure:	)GE HNICA	AL.
										13	3-590			A-1

PRC	JEC	T:	27			YLAND COMMUNITY CENTER TON ROAD/17482 BOSTON ROAD Cherryland, California	of	Bor	ing		.GE 1	OF 1	
Borin	g loca	tion:	S	iee Si	te Pla	n, Figure 2		Logged	d by:	R. For	k		
	started			1/20/1		Date finished: 11/20/13							
Drillin	g metl	nod:	8'	" Hollo	ow Ste	em Auger							
		-				30 inches Hammer type: Safety (downhole)			LABOF	RATORY	( TEST	DATA	
Samp			-		wood	(S&H), Standard Penetration Test (SPT)				gth			>
		SAMF			OGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Stren Sq Ft	Fines %	tural isture ent, %	Densit Cu Ft
DEPTH (feet)	Sampler Type	Sample	Blows/ 6"	SPT N-Value ¹	гітногоду			Stre	Con Pre Lbs/	Shear Strength Lbs/Sq Ft	Ξ	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
<u> </u>	8	05	B	z	5	12 inches concrete fragments				05			
1 —			10			SANDY SILT (ML)	<b>A</b>						
2 —	S&H		7 6	5		yellow-brown, medium stiff, slightly moist	-				54	9.6	90
3 —	SPT		2 3	4			_						
4 —			3				_						
5 —	S&H		4	3	ML	Collapse Test, see Figure B-2	_					12.5	90
6 —			4										
7 -													
8 —							-						
9 —						SANDY CLAY - CLAYEY SAND (CL-SC)							
10 —			10			dark yellow-brown, stiff/medium dense, moist, fine to medium sand	-						
11 —	S&H		11 12	10			<u>i</u>   –					16.0	110
12 —					CL-	medium sand	!  _						
13 —					SC	<u> </u>	¦						
14 —													
15 —	SPT	$\square$	9 11	14		SANDY CLAY (CL)							
16 —	011		13	'-		gray-brown to medium brown, very stiff, moist, fine-grained sand	-						
17 —					CL	line-grained sand	-						
18 —							-						
19 —							_						
20 —			9		SP	SAND (SP) yellow-brown, medium dense, dry, fine gained	_						
21 —	SPT		10	13	<u> </u>		¥						
22 —			12			SANDY CLAY with GRAVEL (CL) dark gray brown to black, very stiff, moist, fine	1_						
						gravel							
23 —					CL								
24 —							{  -						
25 —	0.011		16	40		yellow-brown, red-yellow, darker (trace) medium sand	-					10.0	440
26 —	S&H		16 21	16	СН	CLAY (CH)	¥					19.0	110
27 —						light brown, yellow with brown, very stiff, moist, medium to high plasticity	/-						
28 —													
29 —													
30 —													
Borin surfa		ated at	a deptł	h of 26.	5 feet b	elow ground 'S&H and SPT blow counts for the last two increments we converted to SPT N-Values using factors of 0.4 and 0.6, respectively to account for sampler type and hammer er			<b>S</b>		CKRII		
Borin	g backfi ndwater							Project N	/// lo.:	GEC	DTECI Figure:	HNICA	λL.
	-				-	-		,	13	3-590	.3		A-2

PROJE	CT:	2			YLAND COMMUNITY CENTER TON ROAD/17482 BOSTON ROAD Cherryland, California	Log	of	Bor	ing		AGE 1	OF 1	
Boring loc	ation:	S	ee Si	te Pla	an, Figure 2			Logge	d by:	R. For	d		
Date start	ed:	1	1/20/1	13	Date finished: 11/20/13								
Drilling me	ethod:	8	" Hollo	ow St	em Auger								
Hammer						le)		-	LABOF	RATOR	Y TEST	DATA	
Sampler:		-		wood	d (S&H), Standard Penetration Test (SPT)					ft			<u> </u>
DEPTH (feet) Sampler	Sample	PLES	SPT N-Value ¹	ГІТНОГОGY	MATERIAL DESCRIPTION			Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
			2		4 inches concrete		V	-					
1 — 2 — ^{S&amp;H} 3 — 2		11 14 17 14	13	ML	SANDY SILT (ML) light brown to yellow-brown with trace black organics, stiff, dry, very fine grained		-	-				11.4	92
S&	1	17 21	16										
4 — 5 — ^{SP⁻} 6 —	-	7 7 7	8		SAND (SP) yellow-brown, medium dense, loose, dry to s moist, fine grained, charcoal fragments	slightly	_						
7 — 8 —				SP		Lac		-					
9 — 10 —		11						-					
11 — ^{S&amp;I} 12 —		18 26	18		SANDY CLAY (CL) yellowish brown to gray brown, very stiff, mo sand, medium plasticity	oist, fine	_	-				11.3	107
13 — 14 —				CL			-	-					
15 — 16 — ^{SP⁻} 17 —		7 7 8	9		SANDY CLAY (CL) gray-brown, stiff, moist								
18 — 19 —					SANDY CLAY with GRAVEL (CL) dark gray-brown, stiff, moist, low to medium plasticity			-					
20 — 21 — ^{S&amp;H}	1	9 11 16	11	CL		2		-				15.3	117
22 — 23 —								-					
24 — 25 — 20 SP		9 12	17	СН	CLAY with SAND (CH) yellow-brown with light gray mottling, very st moist, fine subrounded gravel (chert), mediu plasticity	tiff, um	-	-				21.7	
26 — ^{SP} 27 —		12			μασιιοιτγ		¥ -	-				21./	
28 —							_	-					
29 —							_	-					
30					¹ S&H and SPT blow counts for the last two i	noromonto	ore						
surface. Boring bac	kfilled with	n ceme	nt grou	t.	velow ground converted to SPT N-Values using factors or respectively to account for sampler type ar	of 0.4 and 0.6	,		Я	ROGEC		DGE HNICA	AL.
Groundwa	er not end		red duri	ng drilli	ng.			Project N	lo.: 13	3-590	Figure:		A-3

PROJECT:	-	RYLAND COMMUNITY CENTER TON ROAD/17482 BOSTON ROAD Cherryland, California	Log of	Bori	ing		GE 1	OF 1	
Boring location:	See Site Pla	an, Figure 2		Logged	by:	R. Ford			
Date started:	11/20/13	Date finished: 11/20/13		_					
Drilling method:	8" Hollow St	em Auger							
Hammer weight/di	-		ole)	-	LABOR	RATORY	TEST	DATA	
Sampler: Sprag		d (S&H), Standard Penetration Test (SPT)			Det	gth t		. %	t t{
	Blows/ 6" 6 SPT N-Value ¹ LITHOLOGY	MATERIAL DESCRIPTION		Type of Strength Test	Confining Pressure Lbs/Sq Ft	Shear Strength Lbs/Sq Ft	Fines %	Natural Moisture Content, %	Dry Density Lbs/Cu Ft
1 — _{S&amp;H}	8 9 8 10 6	SANDY SILT (ML) light brown to yellow brown, dry, medium c sand	lense, fine	-			59	9.3	86
3 — SPT 4 — S&H 5 —	6 8 7 9 11 10 12 ML	Collapse Test, see Figure B-3	-	-				11.3	98
6 — 7 — 8 —		SAND (SP) yellow-brown, medium dense, slightly mois	t, fine						
9 — 10 —	8	grained							
11 — SPT 12 — 13 —	8 11 SP		-					11.1	
14 — 15 — 16 — ^{S&amp;H}	10 11 15 11 15	SANDY CLAY (CL) dark yellow-brown, stiff to very stiff, moist, medium grained sand	fine to					21.3	105
17 — 18 — 19 —		SANDY CLAY (CL) dark gray-brown to dark, stiff to very stiff, i subangular to subrounded gravel	moist, fine						
20 — 21 — SPT 22 —	8 9 10 CL							15.3	
23 — 24 — 25 —			-						
26 — SPT 27 —	11 14 18 CH 16	SANDY CLAY (CH) yellow-brown with light gray mottling, very s moist, medium plasticity	stiff,						
28 — 29 —			_						
30 Boring terminated at a surface. Boring backfilled with o	•	¹ S&H and SPT blow counts for the last two converted to SPT N-Values using factors respectively to account for sampler type	of 0.4 and 0.6,		Я		KRII MECI	INICA	AL.
Groundwater not enco		ing.		Project No	^{D.:}		Figure:		A-4

PROJE	CT:	27			YLAND COMMUNITY CENTER TON ROAD/17482 BOSTON ROAD Cherryland, California	Log	J O	of Bo	oring		AGE 1	OF 1	
Boring loc	ation:	S	ee Si	te Pla	in, Figure 2			Lo	iged by:	R. For	d		
Date start	ed:	1	1/20/1	3	Date finished: 11/20/13								
Drilling me					em Auger								
Hammer						nole)			LABC	RATOR	Y TEST	DATA	
Sampler:		-	& Hen	WOOC	(S&H), Standard Penetration Test (SPT)					ft			>
- 5	SAMF		-0	OGΥ	MATERIAL DESCRIPTION			Type of Strength	Test Confining Pressure	Stren Sq Ft	Fines %	Natural Moisture Content, %	Densit Cu F1
DEPTH (feet) Sampler	Sample	Blows/ 6"	SPT N-Value¹	гітногобу				Stree	Con Disk	Shear Strength Lbs/Sq Ft	Ē	Na Moi Cont	Dry Density Lbs/Cu Ft
<u> </u>	s s	B	Ż		SANDY SILT (ML)					0			
1 - _{S&amp;F}		6 7	7		light brown, medium stiff, dry to slightly m fine-grained sand	oist,		_				8.7	94
2 —		9 4			inte-grained sand			_					
3 - SPT		3 3	4					_					
4		3											
S&F	1			. 41								8.3	92
5 —				ML									
6 —							IIS						
7 —							LEVEE DEPOSITS	-					
8 —							EDE	_					
9 —							LEVE	_					
10 —		5											
11 - SPT		9 6	9		SANDY CLAY (CL) dark yellow-brown, stiff, moist, fine sand			_				12.3	
12 —	/	0											
13 —				CL									
14 —													
15 -	. 🗌	7 8	10				<b>Y</b>	_					
16 - SPT		8 8	10		SANDY CLAY (CL) gray-brown dark yellow-brown, stiff, moisi		Î	_					
17 —				CL				_					
18 —								_					
19 —								_					
20 —		-		SC	CLAYEY SAND (SC) olive-brown, loose, moist, fine to medium	gravel	_						
21 - SPT	.   /	5 6	8		SANDY CLAY (CL)		ALLUVIUM					21.9	
22 -		7			dark gray brown, stiff, moist, medium san	d	ALLU						
				CL									
23 —								$\neg$					
24 —								_					
25 —		12		СН	SANDY CLAY (CH) light brown, yellow-brown, light gray mottle	ed, verv		$\neg$					
26 — SPT		13 16	17	011	stiff, moist, medium to high plasticity			_					
27 —								$\exists$					
28 —								_					
29 —								$\square$					
30													
2					¹ S&H and SPT blow counts for the last to elow ground converted to SPT N-Values using facto respectively to account for sampler type	rs of 0.4 and 0	).6,		5		CKRII OTEC	)GE HNIC/	٩L
Groundwat					ng.			Proje	ct No.:	3-590	Figure:		
ź										0-090			A-5

			UNIFIED SOIL CLASSIFICATION SYSTEM
M	lajor Divisions	Symbols	Typical Names
200		GW	Well-graded gravels or gravel-sand mixtures, little or no fines
> no. 2	Gravels (More than half of	GP	Poorly-graded gravels or gravel-sand mixtures, little or no fines
ň ^	coarse fraction >	GM	Silty gravels, gravel-sand-silt mixtures
coarse-Grained (more than half of soil sieve size	no. 4 sieve size)	GC	Clayey gravels, gravel-sand-clay mixtures
e-Grai half o sieve	Sands	SW	Well-graded sands or gravelly sands, little or no fines
arse han	(More than half of	SP	Poorly-graded sands or gravelly sands, little or no fines
ore t	coarse fraction <	SM	Silty sands, sand-silt mixtures
) m	110. 4 Sieve Size)	SC	Clayey sands, sand-clay mixtures
e) (e		ML	Inorganic silts and clayey silts of low plasticity, sandy silts, gravelly silts
of soil size)	Silts and Clays LL = < 50	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, lean clays
half sieve		OL	Organic silts and organic silt-clays of low plasticity
than half 200 sieve		МН	Inorganic silts of high plasticity
(more 1 < no. 2	Silts and Clays LL = > 50	СН	Inorganic clays of high plasticity, fat clays
e v		ОН	Organic silts and clays of high plasticity
High	ly Organic Soils	PT	Peat and other highly organic soils

GRAIN SIZE CHART									
	Range of Gra	ain Sizes							
Classification	U.S. Standard Sieve Size	Grain Size in Millimeters							
Boulders	Above 12"	Above 305							
Cobbles	12" to 3"	305 to 76.2							
Gravel coarse fine	3" to No. 4 3" to 3/4" 3/4" to No. 4	76.2 to 4.76 76.2 to 19.1 19.1 to 4.76							
Sand coarse medium fine	No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40 No. 40 to No. 200	4.76 to 0.075 4.76 to 2.00 2.00 to 0.420 0.420 to 0.075							
Silt and Clay	Below No. 200	Below 0.075							

GEOTECHNICAL

SAMPLE DESIGNATIONS/SYMBOLS

					Sample t	aken with Sprague & Henwood split-barrel sampler with a
		Range of Gra	ain Sizes		3.0-inch	outside diameter and a 2.43-inch inside diameter. Darkened
Classific	ation	U.S. Standard Sieve Size	Grain Size in Millimeters			cates soil recovered
Boulders	s	Above 12"	Above 305		Classifica	ation sample taken with Standard Penetration Test sampler
Cobbles	;	12" to 3"	305 to 76.2		Undistur	bed sample taken with thin-walled tube
Gravel coarse fine		3" to No. 4 3" to 3/4" 3/4" to No. 4	76.2 to 4.76 76.2 to 19.1 19.1 to 4.76		Disturbed	
Sand coarse medium		No. 4 to No. 200 No. 4 to No. 10 No. 10 to No. 40	4.76 to 0.075 4.76 to 2.00 2.00 to 0.420	•	Sampling	attempted with no recovery
fine	0	No. 40 to No. 200	0.420 to 0.075		Core san	nple
Silt and (	Clay	Below No. 200	Below 0.075		Analytica	I laboratory sample
Ur	nstabiliz	zed groundwater lev	el		Sample t	aken with Direct Push sampler
Sta	tabilized	l groundwater level			Sonic	
				SAMPLI	ERTYPE	
C Co	ore barr	rel			PT	Pitcher tube sampler using 3.0-inch outside diameter, thin-walled Shelby tube
		aplit-barrel sample and a 1.93-inch insi		ide	S&H	Sprague & Henwood split-barrel sampler with a 3.0-inch outside diameter and a 2.43-inch inside diameter
		Moore piston samp thin-walled tube	ller using 2.5-inch o	outside	SPT	Standard Penetration Test (SPT) split-barrel sampler with a 2.0-inch outside diameter and a 1.5-inch inside diameter
		g piston sampler usi d Shelby tube	ng 3.0-inch outside	e diameter,	ST	Shelby Tube (3.0-inch outside diameter, thin-walled tube) advanced with hydraulic pressure
		YLAND COMMU TON ROAD/174 Cherryland, Ca	82 BOSTON R alifornia			CLASSIFICATION CHART
		<b>ROCKR</b>	IDGE			

Date 12/15/13 Project No.

13-590

Figure A-6







### APPENDIX B Laboratory Test Data







## B. HILLEBRANDT SOILS TESTING, INC. 29 Sugarloaf Terrace, Alamo, CA 94507 - Tel: (510) 409-2916 - Fax: (925) 891-9267 - Email: soiltesting@aol.com

						LAB	RESU	ULTS	SUMN	IARY	FORM	<u>/</u>			
	t Number: sted By:		13-590 CSS			oject N quest l			ampton 013	I				Result Throw	s Due By: Samples Out On:
					A	tterbe	g		-200	1	Comp	action			
Boring #	Sample Depth (feet)	Dry Density (pcf)	Moisture Content (%)	% Collapse @ 2000 psf	Liquid Limit	Plastic Limit	Plasicity Index	Passing #4 Sieve (%)	Passing #40 sieve (%)	Passing #200 sieve (%)	Maximum Dry Density (pcf)	Optimum Moisture (%)	Pocket Penetrometer (tsf)	Torvane (tsf)	Remarks
B-1	1.3	82	14	11.5											
B-1	3.9	97	14					100	100	63					
B-1	11.0	99	16												
B-1	15.0 - 16.5		27												
B-1 B-1	20.0 - 21.5 25.0 - 26.5		16 24												
<u> </u>	20.0 - 20.0		27												
B-2	2.0	90	10					100	99	54					
B-2	4.5	90	13	7.1											
B-2	10.7	110	16												
B-2	26.0	110	19												
B-3	2.0	92	11												
B-3	10.5	107	11												
B-3	21.0	117	15												
B-3	25.0 - 26.5		22												
B-4 B-4	1.2	86	9 11	27				100	98	59					
В-4 В-4	3.8 10.0 - 11.5	98	11	2.7											
B-4	16.0	105	21												
B-4	20.0 - 21.5		15												
B-5	1.2	94	9												
B-5 B-5	4.2 10.0 - 11.5	92	8 12												
	20.0 - 21.5		22												

### **B. HILLEBRANDT SOILS TESTING, INC.**

29 Sugarloaf Terrace, Alamo, CA 94507 - Tel: (510) 409-2916 - Fax: (925) 891-9267 - Email: soiltesting@aol.com

### **MOISTURE CONTENT/DRY DENSITY**

Job #:13-590Job Name:278 HamptonDate:12/6/2013Tested by:Brad Hillebrandt

Additional Tests:	-200		-200			
Boring #:	B-1	B-1	B-2	B-2	B-2	B-3
Depth:	3.9	11.0	2.0	10.7	26.0	2.0
Sample Description:	Brown sandy SILT	Upper 3": Yellowish brown poorly graded SAND Bottom 3": Brown CLAY with some sand	Brown sandy SILT	Brown sandy CLAY	Yellowish brown sandy CLAY	Brown sandy SILT
Can #:	308	368	361	304	302	306
Wet Sample + can	301.8	392.8	290.3	374.9	429.9	302.8
Dry Sample + can	270.4	344.0	267.8	328.5	367.3	275.7
Weight can	38.1	36.1	34.4	38.4	37.5	37.5
Weight water	31.4	48.8	22.5	46.4	62.6	27.1
Weight Dry Sample	232.3	307.9	233.4	290.1	329.8	238.2
WATER CONTENT (%)	13.5%	15.8%	9.6%	16.0%	19.0%	11.4%
Weight Sample + Liner	1045.6	985.8	913.6	1128.4	1145.2	885.5
Weight Liner	256.3	205.2	206.4	210.4	205.8	198.8
Sample Length	6.0	5.7	6.0	6.0	6.0	5.6
Sample Diameter	2.41	2.41	2.41	2.41	2.41	2.41
DRY DENSITY (pcf)	96.8	98.7	89.8	110.2	109.9	91.9

### **B. HILLEBRANDT SOILS TESTING, INC.**

29 Sugarloaf Terrace, Alamo, CA 94507 - Tel: (510) 409-2916 - Fax: (925) 891-9267 - Email: soiltesting@aol.com

### **MOISTURE CONTENT/DRY DENSITY**

Job #: 13-590 Job Name: 278 Hampton Date: 12/6/2013 Tested by: Brad Hillebrandt

	1					
Additional Tests:			-200			
Boring #:	B-3	B-3	B-4	B-4	B-5	B-5
Depth:	10.5	21.0	1.2	16.0	1.2	4.2
Sample Description:	Yellowish brown sandy CLAY	Dark brownish gray sandy CLAY with some fine gravel	Yellowish brown sandy CLAY	Brown sandy CLAY	Brown sandy SILT	Brown sandy SILT
Can #:	301	331	326	310	342	354
Wet Sample + can	343.5	264.7	266.3	357.1	294.6	309.2
Dry Sample + can	312.4	234.6	247.0	301.0	274.2	288.0
Weight can	38.3	37.8	38.7	38.0	40.1	33.6
Weight water	31.1	30.1	19.3	56.1	20.4	21.2
Weight Dry Sample	274.1	196.8	208.3	263	234.1	254.4
WATER CONTENT (%)	11.3%	15.3%	9.3%	21.3%	8.7%	8.3%
Weight Sample + Liner	1060.4	1148.5	878.6	1124.3	941.0	927.8
Weight Liner	206.9	207.9	206.9	208.7	209.1	209.9
Sample Length	6.0	5.85	6.0	6.0	6.0	6.0
Sample Diameter	2.41	2.41	2.41	2.41	2.41	2.41
DRY DENSITY (pcf)	106.7	116.5	85.6	105.0	93.7	92.2

### **B. HILLEBRANDT SOILS TESTING, INC.**

29 Sugarloaf Terrace, Alamo, CA 94507 - Tel: (510) 409-2916 - Fax: (925) 891-9267 - Email: soiltesting@aol.com

#### MOISTURE CONTENT WORKSHEET

Job #: 13-590 Job Name: 278 Hampton Date: 12/6/2013 Tested by: B. Hillebrandt

Additional Tests:									
Boring #:	B-1	B-1	B-1	B-3	B-4	B-4	B-5	B=5	
Depth:	15.0 - 16.5	20.0 - 21.5	25.0 - 26.5	25.0 - 26.5	10.0 - 11.5	20.0 - 21.5	10.0 - 11.5	20.0 - 21.5	
Sample Description:	Brown CLAY	Brown sandy CLAY with some gravel	Dark yellowish brown CLAY	Olive brown CLAY with sand	Yellowish brown clayey SAND	Black gravelly sandy CLAY	Brown sandy CLAY	Olive brown clayey SAND	
Can #:	339	346	321	352	340	332	348	367	
Wet Sample + can	303.7	290.9	278.3	232.9	233.1	289.2	236.5	258.8	
Dry Sample + can	247.5	256.9	232.5	197.2	213.6	256.0	214.8	218.4	
Weight can	37.7	38.2	38.7	32.6	37.8	38.3	38.1	34.0	
Weight water	56.2	34	45.8	35.7	19.5	33.2	21.7	40.4	
Weight Dry Sample	209.8	218.7	193.8	164.6	175.8	217.7	176.7	184.4	
WATER CONTENT (%)	26.8%	15.5%	23.6%	21.7%	11.1%	15.3%	12.3%	21.9%	



### **GRAIN SIZE DISTRIBUTION TEST DATA**

Client: Rockridge Geotechnical Project: 278 Hampton Project Number: 13-590 Location: B-1 Depth: 3.9' Material Description: Brown sandy SILT USCS: ML Tested by: BH

### Sieve Test Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
270.40	38.10	1"	0.00	0.00	100.0
		#4	31.00	31.00	100.0
		#40	32.00	31.00	99.6
		#200	115.80	31.00	63.1

### Fractional Components

Cobbles		Gravel		Sand				Fines			
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total	
0.0	0.0	0.0	0.0	0.1	0.3	36.5	36.9			63.1	

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
						0.1473	0.1833	0.2329	0.3069

Fineness Modulus 0.26

B. Hillebrandt Soils Testing, Inc.

12/13/2013

### **GRAIN SIZE DISTRIBUTION TEST DATA**

Client: Rockridge Geotechnical Project: 278 Hampton Project Number: 13-590 Location: B-2 Depth: 2.0' Material Description: Brown sandy SILT USCS: ML Tested by: BH

### Sieve Test Data

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
267.80	34.40	1"	0.00	0.00	100.0
		#4	31.00	31.00	100.0
		#40	32.40	31.00	99.4
		#200	138.00	31.00	53.6

Fractional Components

Cabbles		Gravel			Sa	nd	Fines			
Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.1	0.5	45.8	46.4			53.6

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0915	0.1762	0.2120	0.2597	0.3282

Fineness Modulus 0.32

_ B. Hillebrandt Soils Testing, Inc.

12/13/2013

### **GRAIN SIZE DISTRIBUTION TEST DATA**

Client: Rockridge Geotechnical Project: 278 Hampton Project Number: 13-590 Location: B-4 Depth: 1.2 Material Description: Yellowish brown sandy CLAY USCS: ML Tested by: BH

Dry Sample and Tare (grams)	Tare (grams)	Sieve Opening Size	Weight Retained (grams)	Sieve Weight (grams)	Percent Finer
247.00	38.70	1"	0.00	0.00	100.0
		#4	31.00	31.00	100.0
		#40	35.30	31.00	97.9
		#200	111.30	31.00	59.4

Fractional Components

Sieve Test Data

Cobbles	Gravel			Sand				Fines		
Copples	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	0.0	0.0	0.0	0.5	1.6	38.5	40.6			59.4

D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
					0.0767	0.1655	0.2054	0.2609	0.3457

Fineness Modulus 0.33

_ B. Hillebrandt Soils Testing, Inc.

12/13/2013



Test Results	Material Description		
R-value at 300 psi exudation pressure = 19	Clayey Dark Brown Silt		
Project No.: 113684C	Tested by: D. Shuemake		
Project: 13-590, Cherryland Community Center	Checked by: M. Faiyaz		
Source of Sample: Native	Remarks:		
Sample Number: 1			
Date: 10/9/2013			
R-VALUE TEST REPORT			
APPLIED MATERIALS & ENGINEERING, INC.	Figure		

Sunland Analytical 11353 Pyrites Way, Suite 4

Rancho Cordova, CA 95670 (916) 852-8557 10/09/2013 10/03/2013 * For future reference to this analysis please use SUN # 65671-135962 The reported analysis was requested for the following location: Submitted Date Reported CA DOT Test #643 Mod. (Sm.Cell) Chloride CA DOT Test #422 % % Site ID : HA-1 #1 3.0FT. EVALUATION FOR SOIL CORROSION Date 00.00112 00.01402 ohm-cm (x1000) NEGATIVE 1 Sulfate Reducing Bacteria Presence \ Randy Horney / Lab Manager 140.2 ppm 11.2 ppm Δu **1.23** Sulfate CA DOT Test #417, **176** pH and Min.Resistivity Rockridge Geotechnical, Inc. your business. % ÷ 94610 13-590 CHERRYLAND 6.34 9°.5 Minimum Resistivity From: Gene Oliphant, Ph.D. General Manager Redox Potential Thank you for 270 Grand Ave Craig Shield ð Moisture 1 Chloride Soil pH Sulfate METHODS Oakland, ... Location To:

Redox Potential ASTM D1498m, Sulfate Reducing Bacteria AWWA C105-72


Sumland Analytical 11353 Pyrites Way, Suite 4 Rancho Cordova, CA 95670 (916) 852-8557 Date Reported 10/09/2013 Date Submitted 10/03/2013

> To: Craig Shield Rockridge Geotechnical, Inc. 270 Grand Ave Oakland, CA 94610

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager The reported analysis was requested for the following: Site ID : HA-1 #1 3.0FT. Thank you for your business. 13-590 CHERRYLAND Location :

e 65671-135962 * For future reference to this analysis please use SUN # 1 1 1 1 1 l F

Extractable Sulfide Analysis

STINU	i i i i i	mg/kg
RESULTS		CIN
TYPE OF TEST	* * * * * * * * * * * * * * *	Sulfide

DETECTION LIMITS Sulfide 0.05 Method 9031m, ND = Below Detection Limits



APPENDIX C Results of Liquefaction Analyses

### LIQUEFACTION ANALYSIS REPORT

### Project title : Cherryland Community Center

### Location : Cherryland, CA



CLiq v.1.7.4.34 - CPT Liquefaction Assessment Software - Report created on: 11/25/2013, 6:19:00 PM Project file: C:\Users\Adam Morales\Dropbox\PROJECTS\Cherryland Community Center\Engineering\CLiq\CLiq Cherryland.clq



CLiq v.1.7.4.34 - CPT Liquefaction Assessment Software - Report created on: 11/25/2013, 6:19:00 PM Project file: C:\Users\Adam Morales\Dropbox\PROJECTS\Cherryland Community Center\Engineering\CLiq\CLiq Cherryland.clq



CLiq v.1.7.4.34 - CPT Liquefaction Assessment Software - Report created on: 11/25/2013, 6:19:00 PM Project file: C:\Users\Adam Morales\Dropbox\PROJECTS\Cherryland Community Center\Engineering\CLiq\CLiq Cherryland.clq 3

### LIQUEFACTION ANALYSIS REPORT

### Project title : Cherryland Community Center

### Location : Cherryland, CA



CLiq v.1.7.4.34 - CPT Liquefaction Assessment Software - Report created on: 11/25/2013, 6:21:11 PM Project file: C:\Users\Adam Morales\Dropbox\PROJECTS\Cherryland Community Center\Engineering\CLiq\CLiq Cherryland.clq



CLiq v.1.7.4.34 - CPT Liquefaction Assessment Software - Report created on: 11/25/2013, 6:21:11 PM Project file: C:\Users\Adam Morales\Dropbox\PROJECTS\Cherryland Community Center\Engineering\CLiq\CLiq Cherryland.clq



CLiq v.1.7.4.34 - CPT Liquefaction Assessment Software - Report created on: 11/25/2013, 6:21:11 PM Project file: C:\Users\Adam Morales\Dropbox\PROJECTS\Cherryland Community Center\Engineering\CLig\CLig Cherryland.clg

### Procedure for the evaluation of soil liquefaction resistance, NCEER (1998)

Calculation of soil resistance against liquefaction is performed according to the Robertson & Wride (1998) procedure. The procedure used in the software, slightly differs from the one originally published in NCEER-97-0022 (Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils). The revised procedure is presented below in the form of a flowchart¹:



¹ "Estimating liquefaction-induced ground settlements from CPT for level ground", G. Zhang, P.K. Robertson, and R.W.I. Brachman

### Procedure for the evaluation of soil liquefaction resistance (all soils) - Robertson (2010)

Calculation of soil resistance against liquefaction is performed according to the Robertson & Wride (1998) procedure. This procedure used in the software, slightly differs from the one originally published in NCEER-97-0022 (Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils). The revised procedure is presented below in the form of a flowchart¹:



¹ P.K. Robertson, 2009. "Performance based earthquake design using the CPT", Keynote Lecture, International Conference on Performance-based Design in Earthquake Geotechnical Engineering – from case history to practice, IS-Tokyo, June 2009

Procedure for the evaluation of soil liquefaction resistance (sandy soils) - Moss et al. (2006)



### Procedure for the evaluation of liquefaction-induced lateral spreading displacements



¹ Flow chart illustrating major steps in estimating liquefaction-induced lateral spreading displacements using the proposed approach



$$\text{LDI} = \int_{0}^{Z_{\text{max}}} \gamma_{\text{max}} dz$$

¹ Equation [3]

¹ "Estimating liquefaction-induced ground settlements from CPT for level ground", G. Zhang, P.K. Robertson, and R.W.I. Brachman

Procedure for the estimation of seismic induced settlements in dry sands



Robertson, P.K. and Lisheng, S., 2010, "Estimation of seismic compression in dry soils using the CPT" FIFTH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN GEOTECHNICAL EARTHQUAKE ENGINEERING AND SOIL DYNAMICS, Symposium in honor of professor I. M. Idriss, San Diego, CA

### Liquefaction Potential Index (LPI) calculation procedure

Calculation of the Liquefaction Potential Index (LPI) is used to interpret the liquefaction assessment calculations in terms of severity over depth. The calculation procedure is based on the methology developed by Iwasaki (1982) and is adopted by AFPS.

To estimate the severity of liquefaction extent at a given site, LPI is calculated based on the following equation:

$$LPI = \int_{0}^{20} (10 - 0.5_Z) \times F_Z \times d_Z$$

where:

 $F_L = 1$  - F.S. when F.S. less than 1  $F_L = 0$  when F.S. greater than 1 z depth of measurment in meters

Values of LPI range between zero (0) when no test point is characterized as liquefiable and 100 when all points are characterized as susceptible to liquefaction. Iwasaki proposed four (4) discrete categories based on the numeric value of LPI:

- LPI = 0 : Liquefaction risk is very low
  0 < LPI <= 5 : Liquefaction risk is low</li>
  5 < LPI <= 15 : Liquefaction risk is high</li>
  LPI < 15 : Liquefaction risk is normalised in the second black of th
- LPI > 15 : Liquefaction risk is very high



Graphical presentation of the LPI calculation procedure

### References

- Lunne, T., Robertson, P.K., and Powell, J.J.M 1997. Cone penetration testing in geotechnical practice, E & FN Spon Routledge, 352 p, ISBN 0-7514-0393-8.
- Boulanger, R.W. and Idriss, I. M., 2007. Evaluation of Cyclic Softening in Silts and Clays. ASCE Journal of Geotechnical and Geoenvironmental Engineering June, Vol. 133, No. 6 pp 641-652
- Robertson, P.K. and Cabal, K.L., 2007, Guide to Cone Penetration Testing for Geotechnical Engineering. Available at no cost at http://www.geologismiki.gr/
- Robertson, P.K. 1990. Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27 (1), 151-8.
- Robertson, P.K. and Wride, C.E., 1998. Cyclic Liquefaction and its Evaluation based on the CPT Canadian Geotechnical Journal, 1998, Vol. 35, August.
- Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder, L.F., Hynes, M.E., Ishihara, K., Koester, J., Liao, S., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R., and Stokoe, K.H., Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshop on Evaluation of Liquefaction Resistance of Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 127, October, pp 817-833
- Zhang, G., Robertson. P.K., Brachman, R., 2002, Estimating Liquefaction Induced Ground Settlements from the CPT, Canadian Geotechnical Journal, 39: pp 1168-1180
- Zhang, G., Robertson. P.K., Brachman, R., 2004, Estimating Liquefaction Induced Lateral Displacements using the SPT and CPT, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 130, No. 8, 861-871
- Pradel, D., 1998, Procedure to Evaluate Earthquake-Induced Settlements in Dry Sandy Soils, ASCE, Journal of Geotechnical & Geoenvironmental Engineering, Vol. 124, No. 4, 364-368
- Iwasaki, T., 1986, Soil liquefaction studies in Japan: state-of-the-art, Soil Dynamics and Earthquake Engineering, Vol. 5, No. 1, 2-70
- P.K. Robertson, 2009, Interpretation of Cone Penetration Tests a unified approach., Canadian Geotechnical Journal, Vol. 46, No. 11, pp 1337-1355
- P.K. Robertson, 2009. "Performance based earthquake design using the CPT", Keynote Lecture, International Conference on Performance-based Design in Earthquake Geotechnical Engineering from case history to practice, IS-Tokyo, June 2009
- Robertson, P.K. and Lisheng, S., 2010, "Estimation of seismic compression in dry soils using the CPT" FIFTH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN GEOTECHNICAL EARTHQUAKE ENGINEERING AND SOIL DYNAMICS, Symposium in honor of professor I. M. Idriss, SAN diego, CA
- R. E. S. Moss, R. B. Seed, R. E. Kayen, J. P. Stewart, A. Der Kiureghian, K. O. Cetin, CPT-Based Probabilistic and Deterministic Assessment of In Situ Seismic Soil Liquefaction Potential, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132,

### Appendix D

### **Hazardous Materials**

Phase II Environmental Site Assessment

Hazardous Material Survey Report



December 9, 2013

Mr. Rod Freitag Environmental Program Manager County of Alameda General Services Agency Technical Services Department 1401 Lakeside Drive, Room 1115 Oakland, CA 94612

RE: Phase II Environmental Site Assessment 17482 Boston Road and 278 Hampton Road Hayward, California

Dear Mr. Freitag:

Vista Environmental Consulting, Inc. (Vista) has prepared this report to document the geophysical survey and soil sampling conducted at 17482 Boston Road and 278 Hampton Road located in Hayward, California (the Site, Figures 1 & 2). The following sections present the objective of the work, a description of field activities and a summary of the analytical results.

### Objective

The objective of this project was to perform a Phase II subsurface investigation at the Site. The work described herein was performed on behalf of the County of Alameda General Services Agency (GSA) and in response to recommended additional investigation activities, as stated in the Vista Phase I Environmental Site Assessment (Phase I ESA) completed in September, 2013.

### **Field Preparation**

Vista performed field reconnaissance and marked boring locations in white paint for Underground Service Alert (USA), a regional sub-surface utility notification service. Figure 2 depicts the boring locations. A boring permit from Alameda County Public Works Agency was not needed for the shallow soil sampling.

### **Field Work**

Based on the Site use history and Vista's observations, the Phase I ESA recommended the collection of soil samples. In addition to soil sampling, GSA requested the performance of a geophysical survey. Presented below are descriptions of each of these two field activities.

### **Geophysical Survey**

A geophysical survey was performed at the Site on October 21, 2013, by JR Associates, an engineering geophysics firm located in San Jose, California. The purpose of the survey was to identify subsurface

2984 Teagarden Street 🖘 San Leandro, CA 94577

Office (510) 346-8860 🐟 Fax (888) 296-0271 🐟 vista-env.com



anomalies that could be indicative of buried metal objects such as tanks, pipes, etc. A complete copy of the geophysical survey report is included as Attachment 1. A discussion of the results is presented below.

### Soil Sample Collection

A total of (24) discrete soil samples from (12) soil borings (Figure 2) and (14) 3-point composite soil samples (Figure 3) were collected at the Site on October 10 and 16, 2013. A summary of sample collection performed at the Site is as follows:

- 1. (8) discrete soil borings located at the Hampton Road property (B-1 through B-8). These borings were advanced using a hand auger to a total depth of 24 inches below ground surface (bgs) with the first sample collected from the ground surface to 12 inches bgs and the second sample collected from 12 inches to 24 inches bgs.
- 2. (10) 3-point composite surface soil samples (278-131010-HA02-01 through 278-131010-HA02-10) located at the Hampton Road property. The 3-point composite samples were collected by placing (3) approximately equal sized soil aliquots from within each composite sampling location.
- 3. (4) discrete soil borings located at the Boston Road property (B-9 through B-12). These borings were advanced using a hand auger to a total depth of 24 inches bgs with the first sample collected from the ground surface to 12 inches bgs and the second sample collected from 12 inches to 24 inches bgs.
- 4. (4) 3-point composite surface soil samples (17482-101613-HA01-01 through 17482-101613-HA01-04) located at the Boston Road property. The 3-point composite samples were collected by placing (3) approximately equal sized soil aliquots from within each composite sampling location.

Vista advanced the soil borings using a hand auger and collected the soil samples as the soil cuttings were retrieved at the surface. The generated soil cuttings were continuously observed such that soil type could be assessed. Recovered soil cuttings were described in general accordance with ASTM standard D-2488-09a and soil type and observations were recorded in the field notes. Soil samples were collected by carefully placing the generated soil cuttings into a clean stainless steel bowl, homogenizing the sample interval and transferring the sample into clean laboratory provided glass jars. Once in the jar, the sample was placed in ice filled chests for transport to TestAmerica, Inc. located in Pleasanton, California, a state of California certified analytical laboratory, under chain-of-custody protocol. Sampling staff used new nitrile gloves before commencing soil boring activities at each sampling location and a second set of new nitrile gloves was used prior to actual soil sample collection.

Prior to commencing soil boring activities at the first boring location and between each soil boring location the sampling tools were cleaned by washing tools that came in contact with the soil (hand auger, stainless steel bowl) in an alconox-water solution, washing with a scrub brush, then rinsing in a bucket of clean water.

2984 Teagarden Street 🖘 San Leandro, CA 94577

Office (510) 346-8860 🐝 Fax (888) 296-0271 🐝 vista-env.com



Vista collected the 3-point composite surface soil samples by first defining each composite sampling zone then collecting the three approximately equal sized aliquots from within each of these zones. Surface soil samples were collected by gently scooping soil by hand and into the sample container. Sampling staff used new nitrile gloves before commencing soil sampling activities at each composite soil sampling zone. Once in the sample container, the sample was placed in ice filled chests for transport to Forensic Analytical Laboratory located in Hayward, California, a state of California certified analytical laboratory, under chain-of-custody protocol.

Observed soil type consisted primarily of brown silt (ML) with varying degrees of sand, gravel and building debris, depending on the particular sampling location. At the Hampton Road property the following observations were made: Building debris (e.g., stucco, wood, glass, metal) was noted in borings B-2, B-3 and B-4. Borings B-1 and B-7 were observed to contain primarily silt with varying degrees of sand and gravel. Borings B-5, B-6 and B-8 were observed to be comprised of silt. At the Boston Road property borings B-9 through B-12 were observed to be comprised of silt with no sand, gravel nor building debris noted. Copies of the field notes are included as Attachment 1.

### **Analytical Program**

For the 8 discrete soil borings located at 278 Hampton Road, the soil samples collected from 0-1.0 feet bgs were initially analyzed by the following analytical procedures:

- 1. Organochlorine pesticides by USEPA Method 8081A;
- 2. Herbicides by USEPA Method 8151A;
- 3. RCRA 8 metals by USEPA Method 6010 (ICP); and
- 4. Asbestos by polarized light microscopy (PLM).

For the (10) 3-point composite surface soil samples located at 278 Hampton Road, the soil samples were analyzed by the following analytical procedures:

- 1. Asbestos by PLM; and
- 2. Lead by USEPA 3050B/7420.

For the 4 discrete soil borings located at 17482 Boston Road, the soil samples collected from 0-1.0 feet bgs were initially analyzed by the following analytical procedures:

- 1. Organochlorine pesticides by USEPA Method 8081A;
- 2. Herbicides by USEPA Method 8151A; and
- 3. RCRA 8 metals by USEPA Method 6010 (ICP)

For the (4) 3-point composite surface soil samples located at 17482 Boston Road, the soil samples were analyzed by the following analytical procedures:

2984 Teagarden Street \land San Leandro, CA 94577



- 1. Asbestos by Polarized Light Microscopy (PLM) utilizing dispersion staining techniques in accordance with the EPA's "Method for the Determination of Asbestos in Bulk Building Materials" U.S. EPA/600/R-93/116, Visual Area Estimate, dated July 1993 and adopted by the NVLAP as Test Method Code 18/A01; and
- 2. Lead by USEPA 3050B/7420.

Discrete soil samples collected from 12 to 24 inches bgs were placed on hold pending the results of the discrete soil samples collected from 0 to 12 inches bgs.

Based on the initial analytical results, some of the deeper discrete soil samples were analyzed:

- 1. Sample B-2-2.0: lead, cadmium and arsenic by USEPA Method 6010 (ICP) and organochlorine pesticides by USEPA Method 8081A;
- 2. Sample B-3-2.0: lead and arsenic by USEPA Method 6010 (ICP) and organochlorine pesticides by USEPA Method 8081A;
- 3. Sample B-5-2.0: lead and arsenic by USEPA Method 6010 (ICP) and organochlorine pesticides by USEPA Method 8081A;
- 4. Sample B-6-2.0: organochlorine pesticides by USEPA Method 8081A;
- 5. Sample B-7-2.0: lead and arsenic by USEPA Method 6010 (ICP) and organochlorine pesticides by USEPA Method 8081A;
- 6. Sample B-8-2.0: lead and arsenic by USEPA Method 6010 (ICP) and organochlorine pesticides by USEPA Method 8081A;
- 7. Sample B-10-2.0: lead and arsenic by USEPA Method 6010 (ICP) and organochlorine pesticides by USEPA Method 8081A;
- 8. Sample B-11-2.0: lead and arsenic by USEPA Method 6010 (ICP) and organochlorine pesticides by USEPA Method 8081A; and
- 9. Sample B-12-2.0: lead, chromium, barium and arsenic by USEPA Method 6010 (ICP) and organochlorine pesticides by USEPA Method 8081A.

Additionally, and upon review of the initial analytical results, the following additional analyses were requested of shallow discrete soil samples:

- 1. Sample B-5-1.0: hexavalent chromium by USEPA Method 7191A;
- 2. Sample B-8-1.0: hexavalent chromium by USEPA Method 7191A; and
- 3. Sample B-12-1.0: hexavalent chromium by USEPA Method 7191A.

Upon conclusion of soil boring and sample collection activities at each discrete soil boring location the boring was backfilled with generated soil core to the ground surface and nominally compacted.

### **Geophysical Survey Results**

According to the JR Associates report, the results of the geophysical survey indicated several subsurface anomalies at the Site. Most of the anomalies could be explained by existing cyclone fencing, existing

2984 Teagarden Street \land San Leandro, CA 94577



concrete slabs and existing structures. Other anomalies could be attributed to buried metal piping, which appears to be associated with water pipes from an irrigation system at the Hampton Road property. One anomaly centered in the Hampton Road property appeared to consist of four smaller anomalies all located adjacent to each other. The location of these 4 small anomalies is depicted on Figure 2 of the JR Associates report (Attachment 1).

### **Analytical Results**

Table 1 presents the results of the asbestos, pesticide and herbicide analyses on discrete soil samples. Table 2 presents the results of the metals analyses on discrete soil samples. Table 3 presents the results of the asbestos and lead analyses on composite soil samples. Only those detected compounds were listed on the tables. Complete copies of the analytical laboratory reports and chain of custody records for the discrete soil samples are included as Attachment 3. Complete copies of the analytical laboratory reports and chain of custody records for the composite soil samples are included as Attachment 4.

### **Discrete Soil Sample Results**

Asbestos was not detected in any soil samples analyzed from 0-1.0 feet (borings B-1 through B-8 at Hampton Road) above laboratory detection limits.

Pesticides were detected in all samples analyzed except samples B-6-2.0, B-9-1.0 and B-12-2.0. 4,4' DDT was detected in 17 of 21 samples analyzed at concentrations ranging from 2.4 to 310 micrograms per kilogram (ug/kg). 4,4' DDE was detected in 15 of 21 samples analyzed at concentrations ranging from 2.4 to 490 ug/kg. 4,4' DDD was detected in 12 of 21 samples analyzed at concentrations ranging from 2.3 to 290 ug/kg. Chlordane was detected in 5 of 21 samples analyzed at concentrations ranging from 60 to 3200 ug/kg. Alpha-chlordane was detected in 7 of 21 samples analyzed at concentrations ranging from 2.4 to 1100 ug/kg. Gamma-chlordane was detected in 6 of 21 samples analyzed at concentrations ranging from 3.7 to 800 ug/kg. Gamma-BHC (Lindane) was detected in 1 of 21 samples analyzed at concentrations ranging from 3 to 34 ug/kg. Dieldrin was detected in 13 of 21 samples analyzed at concentrations ranging from 3.2 to 1200 ug/kg.

The herbicide dicamba was detected in sample B-8-1.0 at a concentration of 3700 ug/kg. All other samples did not contain herbicides above laboratory detection limits.

Lead, cadmium, nickel, total chromium, arsenic, barium and mercury were detected in some or all samples analyzed. All samples were non-detect for silver and selenium. Lead was detected in 20 of 20 samples analyzed at concentrations ranging from 10 to 1400 milligrams per kilogram (mg/kg). Cadmium was detected in 9 of 13 samples analyzed at concentrations ranging from 0.46 to 3.4 mg/kg. Nickel was detected in 8 of 8 samples analyzed at concentrations ranging from 21 to 42 mg/kg. Total chromium was detected in 13 of 13 samples analyzed at concentrations ranging from 21 to 200 mg/kg. Hexavalent chromium was detected in 0 of 3 samples analyzed. Arsenic was detected in 20 of 20 samples analyzed at concentrations ranging from 13 of 13 samples analyzed at concentrations ranging from 21 to 200 mg/kg. Hexavalent

2984 Teagarden Street 🖘 San Leandro, CA 94577

Office (510) 346-8860 🐝 Fax (888) 296-0271 🐝 vista-env.com



concentrations ranging from 110 to 930 mg/kg. Mercury was detected in 13 of 13 samples analyzed at concentrations ranging from 0.063 to 0.40 mg/kg.

### Composite Soil Sample Results

Asbestos was not detected in any of the composite soil samples collected from the Site.

Lead was detected in all 14 composite soil sampling locations at both the Hampton and Boston Road properties. At the Hampton Road property, lead ranged in concentration from 210 mg/kg to 1800 mg/kg. At the Boston Road property, lead ranged in concentration from 70 mg/kg to 1800 mg/kg.

### Discussion

For review and discussion purposes, soil sample analytical results were compared to regulatory agency criteria. The following criteria were used:

- California Regional Water Quality Control Board San Francisco Bay Region Environmental Screening Levels, Summary Tables B-1 and B-2. May 2013. (ESLs)
- 2. Office of Environmental Health Hazard Assessment, California Human Health Screening Levels, Table 1 – Soil Screening Numbers for Non-Volatile Chemicals Based on Total Exposure to Contaminated Soil: Inhalation, Ingestion and Dermal Absorption, September 23, 2010. (CHHSLs)

In order to better understand the detections of metals, the following two sources were referenced to determine if the detected concentrations of metals fell within the expected range of detections associated with naturally occurring metals in the environment:

- 1. Hansford T. Shaklette and Josephine G. Boerngen, *Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States*, U.S. Geological Survey Professional Paper 1270, 1984. (Shaklette)
- Diamond, et al, Analysis of Background Distributions of Metals in the Soil at Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Environmental Restoration Program, June 2002 (revised April 2009). (LBNL)

### Asbestos

As stated in the Analytical Results section, asbestos was not detected in any of the soil samples analyzed (discrete soil borings B-1-1.0 through B-8-1.0 and composite soil samples 278-131010-HA02-01 through 278-131010-HA02-10 at Hampton Road; discrete soil borings B-9-1.0 through B-12-1.0 and composite soil samples 17482-101613-HA01-01 through 17482-101613-HA01-04 at Boston Road).

2984 Teagarden Street 🖘 San Leandro, CA 94577

Office (510) 346-8860 🐝 Fax (888) 296-0271 🐝 vista-env.com



Pesticides

The detected concentrations of pesticides 4,4'-DDT, 4,4'-DDE and 4,4'-DDD were below the regulatory criteria referenced in this report.

Chlordane (technical or "total") was detected above the residential ESL and the residential CHHSL in two samples (B-10-1.0 and B-10-2.0) and above the commercial/industrial ESL and commercial/industrial CHHSL in one sample (B-10-1.0).

There are numerous derivations of chlordane that can be found, of which alpha- and gamma-chlordane are reportedly the most persistent in the environment. Regulatory criteria used for chlordane is based on an additive compilation of these different derivations. According to the analytical laboratory, adding the concentrations of alpha and gamma-chlordane to arrive at a total chlordane level is an acceptable methodology and will thus provide a meaningful comparison to regulatory criteria as the ESLs and CHHSLs do not present alpha nor gamma-chlordane levels, just (technical or "total") chlordane.

Gamma-BHC (Lindane) was detected above the residential and commercial/industrial ESL in one sample (B-8-1.0). It should be noted that for sample B-7-2.0, the analytical laboratory used a dilution factor of 10 due to the elevated concentrations of Dieldrin, DDT and DDD. This resulted in a detection limit of 19 ug/kg for gamma-BHC, which is above the residential and commercial/industrial ESL of 9.8 ug/kg. It should also be noted that gamma-BHC was not detected in the shallower soil sample from boring B-7 (B-7-1.0) based on a detection limit of 2.0 ug/kg.

Endosulfan sulfate was detected above the residential and commercial/industrial ESL in three samples (B-7-1.0, B-7-2.0 and B-8-1.0). It should be noted that for sample B-12-1.0, the analytical laboratory used a dilution factor of 5 due to the elevated concentrations of Dieldrin and DDT. This resulted in a detection limit of 9.8 ug/kg for endosulfan sulfate, which is above the residential and commercial/industrial ESL of 4.6 ug/kg.

Dieldrin was detected above the residential and commercial/industrial ESL in twelve samples, above the residential CHHSL in six samples and above the commercial/industrial CHHSL in five samples.

It should be noted that the residential and commercial/industrial ESLs for dieldrin that are presented on Table 1 are based on a "groundwater protection" basis and not on a "human health protection" basis. We chose to use the groundwater protection basis as it is the lowest number and therefore the most conservative. For reference, the residential ESL for protection of human health is 34 ug/kg and the commercial/industrial ESL for protection of human health is 67 ug/kg.

In the case of toxaphene, the laboratory supplied method detection limit ranges from a low of 39 ug/kg (with a dilution factor of 1) to a high of 200 ug/kg (dilution factor of 5). The ESL User's Guide (first published in November 2007, updated in May 2008 and currently undergoing a second update in 2013) directs the user to substitute the laboratory method detection limit in place of the posted ESL (ESL User's Guide, Section 2.8, Substitution of Laboratory Reporting Limits and Ambient Background Concentrations for ESLs). The User's Guide states that, "…it is generally acceptable to consider the

2984 Teagarden Street 🖘 San Leandro, CA 94577

Office (510) 346-8860 🐟 Fax (888) 296-0271 🐟 vista-env.com



method reporting limit in place of the screening level." This process was confirmed with Uta Hellmann-Blumberg, Staff Toxicologist of the RWQCB, Region 2 (San Francisco Bay Region) via telephone conversation on December 2, 2013.

As noted on the analytical laboratory report from TestAmerica, a few of the subsequently requested pesticide analyses were conducted outside of the 14 day holding time. While this is not ideal from a data defensibility standpoint, the fact that pesticides are well known to be persistent in the environment leads to the conclusion that the concentration of any pesticides contained in the samples will most likely not degrade or decrease over the span of several days beyond the 14 day holding time. An additional point is to note that the samples were stored in a refrigerator at the laboratory thereby further reducing the possibility of sample concentration degradation.

### Metals

Of the 10 metals analyzed, 3 were not detected above laboratory detection levels (hexavalent chromium, silver and selenium). Of the 7 that were detected, 3 were above (lead, arsenic and barium) and 4 were below (cadmium, nickel, total chromium, and mercury) the regulatory criteria referenced in this report.

For lead sample results (including all discrete and composite samples), the levels ranged from 10 mg/kg to a maximum of 1800 mg/kg. The regulatory criteria range from a low of 80 mg/kg (residential ESL and CHHSL) to a high of 320 mg/kg (commercial/industrial ESL and CHHSL). Of the 34 samples analyzed, 25 were above either ESLs and/or CHHSLs. Of these exceedances, 9 were above both the residential ESLs and the CHHSLs but below the commercial/industrial ESLs and CHHSLs and 16 samples were above the commercial/industrial ESLs and CHHSLs.

For arsenic, the levels ranged from 4.4 mg/kg to a maximum of 47 mg/kg. The regulatory criteria range from a low of 0.07 mg/kg (residential CHHSL) to a high of 0.96 mg/kg (commercial/industrial ESL). Having arsenic exceed the regulatory criteria is common in the bay area due to naturally elevated arsenic concentrations in the local bedrock and soil created by the degradation of bedrock. Except for the samples collected at boring B-10 (47 mg/kg at 0-1.0 feet bgs and 45 mg/kg at 1.0-2.0 feet bgs) it appears the levels detected in soil during this program appear similar to those detected in locations throughout the bay area and also appear indicative of natural conditions. At boring B-10, it still may be that the detected concentrations are from a naturally occurring source especially given that all other samples do not indicate a widespread issue of elevated concentrations of arsenic.

For reference, the expected range of concentrations of naturally occurring arsenic, according to Shaklette, is <0.10 to 97 mg/kg with an arithmetic mean concentration of 7.0 mg/kg. The LBNL study estimates that the local (East Bay hills) upper estimate of background concentration is 24 mg/kg. Therefore, when the generated analytical data is compared to the expected range and mean concentration of naturally occurring arsenic one can reasonably conclude that the detected concentrations of arsenic at the Site are most likely due to naturally occurring arsenic in local bedrock and/or soils.

For barium, the levels ranged from 110 to 930 mg/kg. The regulatory criteria range from a low of 750 mg/kg (residential ESL) to a high of 63,000 mg/kg (commercial/industrial CHHSL). A single sample (B-

2984 Teagarden Street 🖘 San Leandro, CA 94577

Office (510) 346-8860 🐟 Fax (888) 296-0271 🐟 vista-env.com



12-1.0) contained barium at 930 mg/kg, which is above the residential ESL of 750 mg/kg. It is important to note that the deeper sample from boring B-12 contained barium at a concentration of 140 mg/kg; well below the residential ESL. Shaklette reports an estimated arithmetic mean concentration of barium in surficial soils in the western United States is 670 mg/kg with an observed range from 70 to 5,000 mg/kg. LBNL reports that an upper estimate of expected background concentration of barium is estimated to be 410 mg/kg. While 930 mg/kg appears to fall outside of the two estimated mean concentrations, it does not appear to be a widespread issue across the Site and furthermore, the one exceedance does fall well within the observed range of concentrations of 70 to 5,000 mg/kg (Shaklette).

### **Conclusions and Recommendations**

Based on the results of the geophysical survey, 4 small and adjacent subsurface anomalies were identified at the Hampton Road property. Given the size and location of these anomalies relative to the location of the former residence at this address, a potholing effort should be conducted to determine the source of the anomaly.

Based on the detected concentrations of certain pesticides (chlordane, gamma BHC, endosulfan sulfate and dieldrin) and lead, it appears that additional lateral and vertical characterization may be warranted. When the lateral and vertical extent of affected soil is defined, removal of affected soil should be contemplated. Additionally, and given the detected levels of pesticides and lead, reporting to a local regulatory agency appears warranted.

Vista appreciates the opportunity to provide The County of Alameda with our environmental consulting services and please do not hesitate to contact Mr. Charles Bove at 925-948-5097 if you have any questions or require additional information.

Respectfully submitted,

Charles Bove Principal

Buch . n. l. l. l.

Brendan Mulholland, PG Project Manager

- 1. Figures (3)
- 2. Tables (3)
- 3. Attachment 1- Geophysical Survey Report JR Associates
- 4. Attachment 2 Field Notes
- 5. Attachment 3 Analytical Laboratory Reports TestAmerica
- 6. Attachment 4 Analytical Laboratory Reports Forensic

2984 Teagarden Street 🖘 San Leandro, CA 94577

Office (510) 346-8860 \land Fax (888) 296-0271 🗞 vista-env.com







CONSULTING, INC.

2984 Teagarden Street

San Leandro, CA 94577

100 Feet

C

(Approximate)

SLW

DISCRETE BORING LOCATION MAP

17482 Boston Rd and 278 Hampton Rd

Hayward, California

2



SLW

DRAWN BY



T	
TABLE	

# DISCRETE SOIL ANALYTICAL RESULTS - ASBESTOS, PESTICIDES, and HERBICIDES¹

17482 Boston Road and 278 Hampton Road

Hayward, California

								Pestici	Pesticides (ug/Kg)				Herbicides (ug/Kg)
Sample Name	Sample Depth (ft bgs)	Sample Date	Asbestos	4, 4'- DDT	4, 4'- DDE	4, 4'- DDD	Chlordane (technical)	alpha- Chlordane ²	gamma- Chlordane ²	gamma- BHC (Lindane)	Endosulfan sulfate	Dieldrin	Dicamba
B-1-1.0	0 - 1.0	10/16/13	ND	10	14	3.8	<40	2.5	<2	<2	<2	<2	<330
B-2-1.0	0 - 1.0	10/16/13	ND	6.5	2.4	2.7	<40	<2	<2	<2	-22	3.4	<320
B-2-2.0	1.0 - 2.0	10/16/13	NA	3	$\Diamond$	$\leq$	<40	<2	<2	<2	<2	<2	NA
B-3-1.0	0 - 1.0	10/16/13	ND	16	3.1	14	<40	<2	<2	<2	<2	13	<330
B-3-2.0	1.0 - 2.0	10/16/13	NA	3.9	<1.9	<1.9	<39	<1.9	<1.9	<1.9	<1.9	2.8	NA
B-4-1.0	0 - 1.0	10/16/13	ND	2.4	2.9	$\leq$ 2	<40	<2	<2	<2	<i>2</i> >	<2	<320
B-5-1.0	0 - 1.0	10/16/13	ND	46	95	51	<40	<2	<2	$\sim$	<b>2</b> >	180	<330
B-5-2.0	1.0 - 2.0	10/16/13	NA	5.4	6.3	2.3	<40	<2	<2	<2	<2	8.9	NA
B-6-1.0	0 - 1.0	10/16/13	ND	$\Diamond$	$\Diamond$	$\Diamond$	<40	$\sim$	$\sim$	$\sim$	$\sim$	3.2	<330
B-6-2.0	1.0 - 2.0	10/16/13	NA	$\sim$	$\Diamond$	$\langle \rangle$	<40	<2	<2	<2	<2	$\sim$	NA
B-7-1.0	0 - 1.0	10/16/13	ND	LL	36	75	63	2.4	3.7	<2	33	1100	<330
B-7-2.0	1.0 - 2.0	10/16/13	NA	170	100	33	<390	<19	<19	<19	33	610	NA
B-8-1.0	0 - 1.0	10/16/13	ND	220	180	290	60	6.7	11	17	34	1200	3700
B-8-2.0	1.0 - 2.0	10/16/13	NA	17	8.6	5.4	<40	<2	<2	<2	<2	50	NA
B-9-1.0	0 - 1.0	10/16/13	NA	<2	<2	<2	<39	<2	<2	<2	<b>Z</b> >	<2	<320
B-10-1.0	0 - 1.0	10/16/13	NA	92	490	110	3200	1100	008	<2	7>	<2	<330
B-10-2.0	1.0 - 2.0	10/16/13	NA	120	170	4>	720	100	90	<4	<4	<4	NA
B-11-1.0	0 - 1.0	10/16/13	NA	25	16	<2	110	20	11	<2	3	6.9	<320
B-11-2.0	1.0 - 2.0	10/16/13	NA	10	8.9	4.6	<39	<2	<2	<2	<2	3.3	NA
B-12-1.0	0 - 1.0	10/16/13	NA	310	55	10	<200	16	14	<9.8	8.6>	300	<330
B-12-2.0	1.0 - 2.0	10/16/13	NA	$\leq$ 2	$\sim$	$\leq$	<39	<2	<2	<2	<2	<2	NA
Re	Residential ESL ³	3	NE	1700	1700	2400	440	NE	NE	9.8	4.6	2.3	NE
Comme	Commercial/Industrial ESL ³	l ESL ³	NE	4000	4000	6000	950	NE	NE	9.8	4.6	2.3	NE
Resi	Residential CHHSL ⁴	$L^4$	NE	1600	1600	2300	430	NE	NE	500	NE	35	NE
Commerc	Commercial/Industrial CHHSL ⁴	CHHSL ⁴	NE	6300	6300	9000	1700	NE	NE	2000	NE	130	NE

## **TABLE 1**

# DISCRETE SOIL ANALYTICAL RESULTS - ASBESTOS, PESTICIDES, and HERBICIDES¹

7482 Boston Road and 278 Hampton Road

Hayward, California

### Notes:

1. Only those detected compounds listed. A complete copy of the analytical laboratory report is included as Attachment 1.

2. There are numerous derivations of chlordane that can be found, of which alpha- and gamma-chlordane are reportedly the most persistent in the environment. Regulatory criteria used for chlordane is based on an additive compilation of these different derivations. According to the analytical laboratory, adding the concentrations of alpha and gamma-chlordane to arrive at a total chlordane level is an acceptable methodology and will thus provide a meaningful comparison to regulatory criteria as the ESLs and CHHSLs do not present alpha nor gamma-chlordane levels, just (technical or "total") chlordane. 3. ESLs = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels. Summary Tables B-1 (Residential Land Use) and B-2 (Commercial/Industrial Land Use) were used for shallow soils ( $\leq 3$  m bgs) where groundwater is not a current or potential source of drinking water, Interim Final - May 2013. 4. Office of Environmental Health Hazard Asessment, California Human Health Screening Levels (CHHSLs), Table 1 - Soil-Screening Numbers (mg/kg of dry soil) for Nonvolatile Chemicals Based on Total Exposure to Contaminated Soil: Inhalation, Ingestion and Dermal Absorption, September 23, 2010.

### Abbreviations:

ug/kg = micrograms per kilogram

NA = Not analyzed for constituent listed

NE = No established level

ESL = Environmental Screening Level

CHHSL = California Human Health Screening Level

**TABLE 2** 

## **DISCRETE SOIL ANALYTICAL RESULTS - METALS¹** 17482 Boston Road and 278 Hampton Road

Hayward, California

						ľ	results in mg/kg					
Sample Name	Sample Depth (ft bgs)	Sample Date	Lead	Cadmium	Nickel	Total Chromium	Hexavalent Chromium	Arsenic	Barium	Silver	Selenium	Mercury
B-1-1.0	0 - 1.0	10/16/13	65	<0.46	21	21	NA	4.4	110	<0.93	<3.7	0.065
B-2-1.0	0 - 1.0	10/16/13	1400	3.4	35	35	NA	8.9	380	<0.92	<3.7	0.40
B-2-2.0	1.0 - 2.0	10/16/13	350	1.4	NA	NA	NA	5.2	NA	NA	NA	NA
B-3-1.0	0 - 1.0	10/16/13	670	1.0	35	36	NA	4.9	390	<0.91	<3.6	0.20
B-3-2.0	1.0 - 2.0	10/16/13	140	NA	NA	NA	NA	5.0	NA	NA	NA	0.073
B-4-1.0	0 - 1.0	10/16/13	55	0.46	41	41	NA	0.6	170	<0.85	<3.4	0.12
B-5-1.0	0 - 1.0	10/16/13	84	0.49	42	41	<2.0	9.9	180	<0.88	<3.5	0.12
B-5-2.0	1.0 - 2.0	10/16/13	16	NA	NA	NA	NA	5.9	NA	NA	NA	NA
B-6-1.0	0 - 1.0	10/16/13	38	<0.43	39	39	NA	5.2	160	<0.87	<3.5	0.075
B-7-1.0	0 - 1.0	10/16/13	100	0.82	28	28	NA	12	220	<0.72	<2.9	0.35
B-7-2.0	1.0 - 2.0	10/16/13	93	NA	NA	NA	NA	6.7	NA	NA	NA	NA
B-8-1.0	0 - 1.0	10/16/13	110	0.53	42	68	<1.9	9.8	270	<0.93	<3.7	0.081
B-8-2.0	1.0 - 2.0	10/16/13	12	NA	NA	NA	NA	6.7	NA	NA	NA	NA
B-9-1.0	0 - 1.0	10/16/13	71	<0.49	NA	46	NA	17	180	<0.97	<3.9	0.063
B-10-1.0	0 - 1.0	10/16/13	440	1.9	NA	46	NA	47	310	<0.97	<3.9	0.11
B-10-2.0	1.0 - 2.0	10/16/13	36	NA	NA	NA	NA	45	NA	NA	NA	NA
B-11-1.0	0 - 1.0	10/16/13	130	<0.46	NA	38	NA	8.3	170	<0.92	<3.7	0.18
B-11-2.0	1.0 - 2.0	10/16/13	330	NA	NA	NA	NA	5.8	NA	NA	NA	NA
B-12-1.0	0 - 1.0	10/16/13	630	0.91	NA	200	<2.0	7.8	930	<0.95	<3.8	0.13
B-12-2.0	1.0 - 2.0	10/16/13	10	NA	NA	36	NA	5.9	140	NA	NA	NA
R	Residential ESL ²	ر 2	80	12	150	$1000^3$	8	68.0	750	20	10	6.7
Comme	Commercial/Industrial ESL ²	al ESL ²	320	12	150	$2500^{3}$	8	96.0	1500	40	10	10
Res	Residential CHHSL ⁴	$SL^4$	80	1.7	1600	$NE^{5}$	17	0.07	5200	380	380	18
Commerc	Commercial/Industrial CHHSL ⁴	CHHSL ⁴	320	7.5	16000	$NE^{5}$	37	0.24	63000	4800	4800	180

# TABLE 2

## DISCRETE SOIL ANALYTICAL RESULTS - METALS¹ 17482 Boston Road and 278 Hampton Road

Hayward, California

### Notes:

1. Only those detected compounds listed. A complete copy of the analytical laboratory report is included as Attachment 1.

2. ESLs = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels. Summary Tables B-1 (Residential Land Use) and B-2 (Commercial/Industrial Land Use) were used for shallow soils (<3 m bgs) where groundwater is not a current or potential source of drinking water, Interim Final - May 2013. 3. ESLs, Table B-1, do not establish a level for total chromium. ESL for Chromium III is 750 mg/kg for both residential and industrial land use. ESL for Chomium VI is 8 mg/kg for both residential and industrial land use. ESLs, Table H-2, establishes a "ceiling level" for total chromium at 1000 mg/kg for residential land use and 2500 mg/kg for industrial land use and is based on eco-toxicity.

4. Office of Environmental Health Hazard Asessment, California Human Health Screening Levels (CHHSLs), Table 1 - Soil-Screening Numbers (mg/kg of dry soil)

for Nonvolatile Chemicals Based on Total Exposure to Contaminated Soil: Inhalation, Ingestion and Dermal Absorption, September 23, 2010.

5. CHHSLs do not establish a level for total chromium. CHHSL for Chromium III is 100,000 mg/kg for both residential and industrial land use. CHHSL for Chromium VI is 17 mg/kg for residential land use and 37 mg/kg for industrial land use

### Abbreviations:

mg/kg = milligrams per kilogram

NA = Not analyzed for constituent listed

NE = No established level

ESL = Environmental Screening Level

CHHSL = California Human Health Screening Level

### TABLE 3COMPOSITE SOIL ANALYTICAL RESULTS - LEAD and ASBESTOS

Sample Name	Sample Date	Lead (mg/kg)	Asbestos
278		Road Samples ¹	l
1	10/10/13	490	ND
2	10/10/13	350	ND
3	10/10/13	210	ND
4	10/10/13	710	ND
5	10/10/13	1500	ND
6	10/10/13	1800	ND
7	10/10/13	1100	ND
8	10/10/13	330	ND
9	10/10/13	270	ND
10	10/10/13	1100	ND
174	82 Boston H	Road Samples ¹	Ĺ
1	10/16/13	200	ND
2	10/16/13	1800	ND
3	10/16/13	370	ND
4	10/16/13	70	ND
Resi	dential ESL ²	80	NE
Commercial/Inc	lustrial ESL ²	320	NE
Residen	tial CHHSL ³	80	NE
Commercial/Indust	rial CHHSL ³	320	NE

### 17482 Boston Road and 278 Hampton Road Hayward, California

### Notes:

1. For purposes of clarity and simplicity, the sample names were shortened for presentation on this Table 3. A complete copy of the analytical laboratory report is included as Attachment 4.

2. ESLs = California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels. Summary Tables B-1 (Residential Land Use) and B-2 (Commercial/Industrial Land Use) were used for shallow soils ( $\leq$ 3 m bgs) where groundwater is not a current or potential source of drinking water, Interim Final - May 2013.

3. Office of Environmental Health Hazard Asessment, California Human Health Screening Levels (CHHSLs), Table 1

- Soil-Screening Numbers (mg/kg of dry soil) for Nonvolatile Chemicals Based on Total Exposure to Contaminated Soil: Inhalation, Ingestion and Dermal Absorption, September 23, 2010.

### Abbreviations:

mg/kg = milligrams per kilogram

NA = Not analyzed for constituent listed

NE = No established level

ESL = Environmental Screening Level

CHHSL = California Human Health Screening Level



Engineering Geophysics 1886 Emory Street San Jose, CA 95126 (408) 293-7390

### MAGNETIC INVESTIGATION AT 17482 BOSTON ROAD AND 278 HAMPTON ROAD HAYWARD, CALIFORNIA

October 25, 2013

For

Vista Environmental Consulting 2984 Teagarden Street San Leandro, California 94577

By

James Ko

James Rezowalli, GP-921

### TABLE OF CONTENTS

LIST OF ILLUSTRATIONS	iii
I INTRODUCTION	1
A. Site	1
II METHODS	2
<ul><li>A. Magnetic Instrumentation</li><li>B. Magnetic Field Procedures</li></ul>	2 2
III RESULTS	3
<ul><li>A. Magnetic Anomalies</li><li>B. Limitations</li></ul>	3 3

IV DRAWINGS
# LIST OF ILLUSTRATIONS

Drawing 1 Vicinity Map

Drawing 2 Magnetic Contour Map

# **I INTRODUCTION**

This report presents the results of a geophysical investigation performed at 17482 Boston Road and 278 Hampton Road in Hayward, California. The investigation was performed for Vista Environmental Consulting by J R Associates. The purpose of the investigation was to look for geophysical indications of buried metal objects. James Rezowalli, Principal Geophysicist, and Brian Rezowalli, Technician, of J R Associates performed the field work in October of 2013.

# A. Site

The site consists of two properties, one is off Hampton Road and the other is off Boston Road in Hayward, California (Drawing 1). The property off Boston Road is a single family residence and the property off Hampton is an empty lot. A single family residence once occupied the empty lot. Remnants of concrete pads and hose bibs could still be seen on the Hampton Road property. The purpose of our magnetic investigation was to look for geophysical indications of buried metal objects. Encountering buried objects like old tanks, buried trash, and old wells can hinder future redevelopment. Encountering unexpected buried objects can slow reconstruction and add to its cost.

# **II METHODS**

We performed a magnetic investigation at the site. A magnetic investigation maps the earth's vertical magnetic gradient. The magnetic gradient is uniform throughout a site free of metal. The magnetic gradient at a site that contains ferrous metal is not uniform. Metal objects produce magnetic anomalies with characteristic shapes and magnitudes. For example, an anomaly caused by a buried fuel storage tank is characterized by a strong magnetic low just south of the center of the tank and a weaker magnetic high just north of the tank. This type of anomaly is what we use to locate buried fuel storage tanks.

# A. Magnetic Instrumentation

We used a Geometrics model 856 proton precession magnetometer to collect magnetic data at the site. The magnetometer had two sensors and an electronics package. The magnetometer collected both total field data and vertical gradient data. The magnetometer can discriminate to 0.1 gammas in a total field of 40,000 to 60,000 gammas. Magnetic readings were stored in memory with the time of day, station numbers, and line numbers of the readings. The data were downloaded to a computer and contoured.

## B. Magnetic Field Procedures

The area where magnetic data were collected is shown on Drawing 2. Magnetic data were collected at 10-foot intervals along lines spaced 10 feet apart in accessible areas of the site. At the end of the field day the magnetic data were downloaded and contoured. An anomaly is indicated by a series of concentric magnetic contours.

# **III RESULTS**

# A. Magnetic Anomalies

Drawing 2 shows the contour map of the magnetic data collected at the property. There were several magnetic anomalies at the site. Most of the anomalies were caused by the cyclone fences surrounding the site. Some anomalies were caused by the house and shed on the Boston road property. Other anomalies were caused by buried pipes. The pipes appeared to be water lines and were probably part of an irrigation system on the Hampton Road property. We found one area with four small anomalies that were from buried metal. The area was in the middle of the Hampton Road property and is shown in red on Drawing 2. The anomalies were marked with green pin flags in the field. Usually anomalies like these are caused by debris left over from the demolition of buildings. Occasionally they are caused from buried trash pits or old heating oil tanks. Typically the objects that cause anomalies like these are buried within three feet of the ground surface. We recommend potholing the four anomalies to determine their cause.

## B. Limitations

Magnetic methods locate ferrous objects from the anomalies they produce in the earth's magnetic field. It is possible some ferrous objects will not produce an anomaly. Some possible reasons are that the object is buried too deep, the object is too small, the object is buried under or near another metal object, or an object is buried near a utility. It is possible there are materials buried at the site that were not detected by the magnetometer. We recommend rerunning the magnetic survey after the surface metal has been removed.

**IV DRAWINGS** 





DAILY	FIELD RECO	RD									
						Pa	ge 1 of				
Project and Tasl	k Number:			Date: 10/14/13							
Project Name: }	lempton / Boston	Rd S	Siles								
	ayward, CA	101	Weather: Clears, 50's, 0-5 m/h								
PERSONNEL:	Name			Company		Time In	Time Out				
Charles R	lome (LFR)	L	lista Envi	ronmental Consul	ting, In	2. 0650					
Luis Rocha (LR)				4.1	J	0655	1000				
Jason Garison			Alumeda 1	sunty		1100	1140				
DEDCOMAL CA	FETV AUFAVUAT										
	FETY CHECKLIST	r	1								
	eel-toed Boots Ha					yvek Coveralls					
γ Rubber		K		ggles/vest	1	/2-Face Respir					
DRUM I.D.	DESCRIPTIO	N OF C	ONTENTS	AND QUANTITY	LOCATI	ON					
		·····									
-4											
TIME		[	DESCRIPT	ION OF WORK PEF	RFORMED	)					
6650	CFR onsite, F	rep	For day	is activities							
6658	LR onsite.			n, DI+ Aloc		Followed	by				
	DI water rin	se.	1				/				
	*Sample will	be c	ollect	USING a clean	hang	auger, So	: 1 inferval				
	collect wi	Il b.	4 8-1	ft bas (1.0 sai	nole)	and 1.0 -	2.0 ft				
	boys (2. 0 sa	mole)!	Interv	als will be	Compos	ifed in	a clign				
	Stainless stue			1 11 / 1	nto Lak	supplied	1602 glcss				
	jor and yo				1	71	0				
0720	Collect soil			-1.0 y Fronty	and of h	ouse brow	nsilt				
0735	t1 11	11		9-2.0							
67:40	ş t - 1 t	، ۱	-	0-1.0 7 Plante	r next k	o driveway	brown silt				
0795	с. <u>t</u> с	ч		0-2.0		1					
0805		۰ ،		1 10 7 Back	eyead	brownsil	ł				
0810	e. , *	. '		11-2.0	10.00	KU					

Vista Environmental Consulting, Inc. 2984 Teagarden Street San Leandro, CA

DAILY	FIELD RECORD (continued) Page 2 of
Project Name:	Boston/Hampton Site Hayward, CA Date: 10/16/13
TIME	DESCRIPTION OF WORK PERFORMED
0820	B-12-1.6
0825	3-12-2.0
0830-0900	Help wis take pd tasbests samples from N, S, E, W side of
	house under trip line. 3 surface samples composited into one
	semple at each side.
0905	Bigin clianup and prip to mob for Hampton Rd.
0920	Set up to sample location B-1 at Hampton Rd
0935	
0940	B-1-1.0 B-1-2.0 Brown silt w/sand tquard
0950	B-2-1.0 Thrown silt up bldg debois B-2-2.0 - brown silt up bldg debois
0955	
.1000	Lois utfsite
1005	B-3-1,0 Jorewa strut hldg debis B-3-2,0 -word, shuceo?
1010	B-3-2,0 -wood, shuceo.
1025	B-4-1.0 7 Brown sitt w/ possible stored? B-4-2.12 B-4-2.12
1030	15 1 610
1045	B-5-1.0 - Browns: 1+ B-5-2.0 -
1050	
1100	Jason Garison ousite
1125	B-6-1.0 g Brownsilf
,1130	B-6-2,0
1140	Jason Garson, Hsite
1145	B-7-1. Dy Brows. It al sand + Guard
1150	B-7-2.0-
1220	B-8-10 7 Broan silt
1230	$\beta \cdot \beta \cdot \gamma_{,0}$
1960	site clean, paperwork geonplate, CFR offs, 7te.



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

# TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

# TestAmerica Job ID: 720-53093-1

Client Project/Site: Boston/Hampton Road Sites Revision: 1

# For:

Vista Environmental Consulting, Inc 2984 Teagarden Street San Leandro, California 94577

Attn: Jeff Austin

Alhaema

Authorized for release by: 10/28/2013 4:16:40 PM Dimple Sharma, Project Manager I (925)484-1919 dimple.sharma@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	9
QC Sample Results	29
QC Association Summary	39
Lab Chronicle	43
Certification Summary	47
Method Summary	48
Sample Summary	49
Subcontract Data	50
Chain of Custody	53
Receipt Checklists	55

3

5

# Qualifiers

# GC Semi VOA

GC Selli VUA	
Qualifier	Qualifier Description
p	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
F	MS/MSD Recovery and/or RPD exceeds the control limits

# Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	13
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

#### Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-53093-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 10/16/2013 5:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were  $2.6^{\circ}$  C and  $4.7^{\circ}$  C.

#### GC Semi VOA

Method 8151A: Due to the level of dilution required for the following sample, surrogate recoveries are not reported: B-8-1.0 (720-53093-15).

Method 8151A: The matrix spike (MS) recovery for batch 207861 was outside control limits for 2,4-D. The associated laboratory control sample (LCS) recovery met acceptance criteria. B-1-1.0 (720-53093-1)

Method 8081A: The matrix spike / matrix spike duplicate (MS/MSD) percent recoveries and %RPD for batch 146662 were outside control limits due to matrix interference.

Method 8081A: Due to the level of dilution required for the following sample, surrogate recoveries are not reported: B-10-1.0 (720-53093-19), B-7-1.0 (720-53093-13), B-8-1.0 (720-53093-15).

Method 8081A: The % RPD between the primary and confirmation columns is >40% for sample B-2-1.0 (720-53093-3). Due to the coelution of a non-target peak, the lower value has been reported instead of the higher value for the following compounds:DDD

Method 8081A: The % RPD between the primary and confirmation columns is >40% for sample B-4-1.0 (720-53093-7). Due to the coelution of a non-target peak, the lower value has been reported instead of the higher value for the following compounds: DDT

Method 8081A: The % RPD between the primary and confirmation columns is >40% for sample B-10-1.0 (720-53093-19). Due to the coelution of a non-target peak, the lower value has been reported instead of the higher value for the following compounds:DDD

Method 8081A: Surrogate recovery for the following sample was outside control limits: B-12-1.0 (720-53093-23). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8081A: The % RPD between the primary and confirmation columns is >40% for sample B-11-1.0 (720-53093-21). Due to the coelution of a non-target peak, the lower value has been reported instead of the higher value for the following compounds: Alpha-chlodane & gamma-chlodane.

Method 8081A: The % RPD between the primary and confirmation columns is >40% for sample B-12-1.0 (720-53093-23). Due to the coelution of a non-target peak, the lower value has been reported instead of the higher value for the following compounds: DDD.

Method 8081A: The matrix spike / matrix spike duplicate (MS/MSD) percent recoveries and %RPD for batch #146684 were outside control limits. This is attributed to: non-homogeneity of the sample matrix; abundance of target analytes at concentrations significantly higher than the spike concentration; matrix interferences; etc.>>

No other analytical or quality issues were noted.

#### Metals

No analytical or quality issues were noted.

#### **Organic Prep**

No analytical or quality issues were noted.

# Lab Sample ID: 720-53093-1

Lab Sample ID: 720-53093-3

5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
4,4'-DDT	10		2.0		ug/Kg	1	_	8081A	Total/NA
4,4'-DDE	14		2.0		ug/Kg	1		8081A	Total/NA
4,4'-DDD	3.8	р	2.0		ug/Kg	1		8081A	Total/NA
alpha-Chlordane	2.5	p	2.0		ug/Kg	1		8081A	Total/NA
Lead	65		1.9		mg/Kg	4		6010B	Total/NA
Nickel	21		1.9		mg/Kg	4		6010B	Total/NA
Chromium	21		1.9		mg/Kg	4		6010B	Total/NA
Arsenic	4.4		3.7		mg/Kg	4		6010B	Total/NA
Barium	110		1.9		mg/Kg	4		6010B	Total/NA
Mercury	0.065		0.0086		mg/Kg	1		7471A	Total/NA

# Client Sample ID: B-2-1.0

Analyte

Dieldrin

4,4'-DDT

4,4'-DDE

4,4'-DDD

Cadmium

Chromium

Lead

Nickel

Arsenic

Barium

Mercury

#### Result Qualifier RL MDL Unit Dil Fac D Method Prep Type 3.4 2.0 ug/Kg 8081A Total/NA 1 6.5 2.0 ug/Kg 1 8081A Total/NA 2.4 2.0 ug/Kg 1 8081A Total/NA 2.0 1 8081A Total/NA 2.7 р ug/Kg 1.8 4 6010B Total/NA 1400 mg/Kg 4 6010B Total/NA 3.4 0.46 mg/Kg 4 35 1.8 mg/Kg 6010B Total/NA 4 6010B 35 mg/Kg Total/NA 1.8 6.8 3.7 mg/Kg 4 6010B Total/NA 380 1.8 mg/Kg 4 6010B Total/NA

mg/Kg

# Client Sample ID: B-3-1.0

# Lab Sample ID: 720-53093-5

Lab Sample ID: 720-53093-7

Total/NA

1

7471A

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	13		2.0		ug/Kg	1	_	8081A	Total/NA
4,4'-DDT	16		2.0		ug/Kg	1		8081A	Total/NA
4,4'-DDE	3.1		2.0		ug/Kg	1		8081A	Total/NA
4,4'-DDD	14		2.0		ug/Kg	1		8081A	Total/NA
Lead	670		1.8		mg/Kg	4		6010B	Total/NA
Cadmium	1.0		0.45		mg/Kg	4		6010B	Total/NA
Nickel	35		1.8		mg/Kg	4		6010B	Total/NA
Chromium	36		1.8		mg/Kg	4		6010B	Total/NA
Arsenic	4.9		3.6		mg/Kg	4		6010B	Total/NA
Barium	390		1.8		mg/Kg	4		6010B	Total/NA
Mercury	0.20		0.0091		mg/Kg	1		7471A	Total/NA

0.0091

0.40

# Client Sample ID: B-4-1.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
4,4'-DDT	2.4		2.0		ug/Kg	1	_	8081A	Total/NA
4,4'-DDE	2.9		2.0		ug/Kg	1		8081A	Total/NA
Lead	55		1.7		mg/Kg	4		6010B	Total/NA
Cadmium	0.46		0.42		mg/Kg	4		6010B	Total/NA
Nickel	41		1.7		mg/Kg	4		6010B	Total/NA
Chromium	41		1.7		mg/Kg	4		6010B	Total/NA

This Detection Summary does not include radiochemical test results.

# **Detection Summary**

# Client Sample ID: B-4-1.0 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Arsenic	9.0		3.4		mg/Kg	4	6010B	Total/NA
Barium	170		1.7		mg/Kg	4	6010B	Total/NA
Mercury	0.12		0.0095		mg/Kg	1	7471A	Total/NA

# Client Sample ID: B-5-1.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	180		2.0		ug/Kg	1	_	8081A	Total/NA
4,4'-DDT	46		2.0		ug/Kg	1		8081A	Total/NA
4,4'-DDE	95		2.0		ug/Kg	1		8081A	Total/NA
4,4'-DDD	51		2.0		ug/Kg	1		8081A	Total/NA
Lead	84		1.8		mg/Kg	4		6010B	Total/NA
Cadmium	0.49		0.44		mg/Kg	4		6010B	Total/NA
Nickel	42		1.8		mg/Kg	4		6010B	Total/NA
Chromium	41		1.8		mg/Kg	4		6010B	Total/NA
Arsenic	6.6		3.5		mg/Kg	4		6010B	Total/NA
Barium	180		1.8		mg/Kg	4		6010B	Total/NA
Mercury	0.12		0.0098		mg/Kg	1		7471A	Total/NA

# Client Sample ID: B-6-1.0

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Dieldrin	3.2	2.0	ug/Kg	1	8081A	Total/NA
Lead	38	1.7	mg/Kg	4	6010B	Total/NA
Nickel	39	1.7	mg/Kg	4	6010B	Total/NA
Chromium	39	1.7	mg/Kg	4	6010B	Total/NA
Arsenic	5.2	3.5	mg/Kg	4	6010B	Total/NA
Barium	160	1.7	mg/Kg	4	6010B	Total/NA
Mercury	0.075	0.0097	mg/Kg	1	7471A	Total/NA

# Client Sample ID: B-7-1.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	1100		20		ug/Kg	10	_	8081A	Total/NA
4,4'-DDT	77		2.0		ug/Kg	1		8081A	Total/NA
4,4'-DDE	36		2.0		ug/Kg	1		8081A	Total/NA
4,4'-DDD	75	p	2.0		ug/Kg	1		8081A	Total/NA
Endosulfan sulfate	33		2.0		ug/Kg	1		8081A	Total/NA
Chlordane (technical)	63	р	40		ug/Kg	1		8081A	Total/NA
alpha-Chlordane	2.4	p	2.0		ug/Kg	1		8081A	Total/NA
gamma-Chlordane	3.7		2.0		ug/Kg	1		8081A	Total/NA
Lead	100		1.4		mg/Kg	4		6010B	Total/NA
Cadmium	0.82		0.36		mg/Kg	4		6010B	Total/NA
Nickel	28		1.4		mg/Kg	4		6010B	Total/NA
Chromium	28		1.4		mg/Kg	4		6010B	Total/NA
Arsenic	12		2.9		mg/Kg	4		6010B	Total/NA
Barium	220		1.4		mg/Kg	4		6010B	Total/NA
Mercury	0.35		0.0092		mg/Kg	1		7471A	Total/NA

# Client Sample ID: B-8-1.0

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 720-53093-1

Lab Sample ID: 720-53093-7

Lab Sample ID: 720-53093-9

# 2 3 4 5 6 7 8 9 10 11 12 13

# Lab Sample ID: 720-53093-11

Lab Sample ID: 720-53093-13

# Client Sample ID: B-8-1.0 (Continued)

# Lab Sample ID: 720-53093-15

Lab Sample ID: 720-53093-17

Lab Sample ID: 720-53093-21

Lab Sample ID: 720-53093-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	lethod	Prep Type
Dieldrin	1200		19		ug/Kg	10	- 8	3081A	Total/NA
4,4'-DDT	220		1.9		ug/Kg	1	8	3081A	Total/NA
4,4'-DDE	180		1.9		ug/Kg	1	8	3081A	Total/NA
4,4'-DDD	290		1.9		ug/Kg	1	8	3081A	Total/NA
gamma-BHC (Lindane)	17		1.9		ug/Kg	1	8	3081A	Total/NA
Endosulfan sulfate	34		1.9		ug/Kg	1	8	3081A	Total/NA
Chlordane (technical)	60	p	39		ug/Kg	1	8	3081A	Total/NA
alpha-Chlordane	6.7	р	1.9		ug/Kg	1	8	3081A	Total/NA
gamma-Chlordane	11		1.9		ug/Kg	1	8	3081A	Total/NA
Dicamba - DL	3700		1600		ug/Kg	50	8	3151A	Total/NA
Lead	110		1.9		mg/Kg	4	6	6010B	Total/NA
Cadmium	0.53		0.46		mg/Kg	4	6	6010B	Total/NA
Nickel	42		1.9		mg/Kg	4	6	6010B	Total/NA
Chromium	39		1.9		mg/Kg	4	6	6010B	Total/NA
Arsenic	8.6		3.7		mg/Kg	4	6	6010B	Total/NA
Barium	270		1.9		mg/Kg	4	6	6010B	Total/NA
Mercury	0.081		0.0095		mg/Kg	1	7	7471A	Total/NA

# Client Sample ID: B-9-1.0

No Detections.

#### Lab Sample ID: 720-53093-19 Client Sample ID: B-10-1.0 Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type 4,4'-DDT 92 2.0 ug/Kg 8081A Total/NA 1 4,4'-DDE 490 20 ug/Kg 10 8081A Total/NA 4,4'-DDD 110 2.0 ug/Kg 1 8081A Total/NA р Chlordane (technical) 3200 400 ug/Kg 10 8081A Total/NA alpha-Chlordane 1100 20 ug/Kg 10 8081A Total/NA gamma-Chlordane 800 20 10 8081A Total/NA ug/Kg

# Client Sample ID: B-11-1.0

Analyte	Result Qu	alifier RL	MDL Unit	Dil Fac	D Method	Prep Type
Dieldrin	6.9	2.0	ug/Kg	1	8081A	Total/NA
4,4'-DDT	25	2.0	ug/Kg	1	8081A	Total/NA
4,4'-DDE	16	2.0	ug/Kg	1	8081A	Total/NA
Endosulfan sulfate	3.0	2.0	ug/Kg	1	8081A	Total/NA
Chlordane (technical)	110	40	ug/Kg	1	8081A	Total/NA
alpha-Chlordane	20 p	2.0	ug/Kg	1	8081A	Total/NA
gamma-Chlordane	11 p	2.0	ug/Kg	1	8081A	Total/NA

# Client Sample ID: B-12-1.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	300		9.8		ug/Kg	5	_	8081A	Total/NA
4,4'-DDT	310		9.8		ug/Kg	5		8081A	Total/NA
4,4'-DDE	55		9.8		ug/Kg	5		8081A	Total/NA
4,4'-DDD	10	p	9.8		ug/Kg	5		8081A	Total/NA
alpha-Chlordane	16	р	9.8		ug/Kg	5		8081A	Total/NA

This Detection Summary does not include radiochemical test results.

# **Detection Summary**

		mary				Ĺ			
Client: Vista Environmental Co Project/Site: Boston/Hampton					TestAmerica Job ID: 720-53093-1				
Client Sample ID: B-12-1	.0 (Continued)				Lab	Sample ID	: 720-53093-23	3	
Analyte		Qualifier	RL	MDL Unit	Dil Fac D		Prep Type	4	
gamma-Chlordane	14		9.8	ug/Kg	5	8081A	Total/NA	5	
							6	5	
								7	
							8	8	
							9	9	
							1	3	

This Detection Summary does not include radiochemical test results.

# Lab Sample ID: 720-53093-1 Matrix: Solid

Date Collected: 10/16/13 09:35 Date Received: 10/16/13 17:10

Client Sample ID: B-1-1.0

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Dieldrin	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Endrin aldehyde	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Endrin	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Endrin ketone	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Heptachlor	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Heptachlor epoxide	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
4,4'-DDT	10		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
4,4'-DDE	14		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
4,4'-DDD	3.8	p	2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Endosulfan I	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Endosulfan II	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
alpha-BHC	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
beta-BHC	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
gamma-BHC (Lindane)	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
delta-BHC	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Endosulfan sulfate	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Methoxychlor	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Toxaphene	ND		40	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Chlordane (technical)	ND		40	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
alpha-Chlordane	2.5	р	2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
gamma-Chlordane	ND		2.0	ug/Kg		10/21/13 11:21	10/22/13 02:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Tetrachloro-m-xylene	88		57 _ 122	10/21/13 11:21	10/22/13 02:02	1
l	DCB Decachlorobiphenyl	113		21 - 136	10/21/13 11:21	10/22/13 02:02	1

Method:	8151A	- Herbicides	(GC)
---------	-------	--------------	------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		330		ug/Kg		10/21/13 00:26	10/22/13 06:20	10
Dichlorprop	ND		330		ug/Kg		10/21/13 00:26	10/22/13 06:20	10
2,4-D	ND		330		ug/Kg		10/21/13 00:26	10/22/13 06:20	10
Silvex (2,4,5-TP)	ND		330		ug/Kg		10/21/13 00:26	10/22/13 06:20	10
2,4,5-T	ND		330		ug/Kg		10/21/13 00:26	10/22/13 06:20	10
2,4-DB	ND		330		ug/Kg		10/21/13 00:26	10/22/13 06:20	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	66		32 - 122				10/21/13 00:26	10/22/13 06:20	10

### Method: 6010B - Metals (ICP)

Analyte	Result Q	ualifier RL	MDL Uni	it D	Prepared	Analyzed	Dil Fac
Lead	65	1.9	mg	/Kg	10/18/13 21:56	10/21/13 17:49	4
Cadmium	ND	0.46	mg	/Kg	10/18/13 21:56	10/21/13 17:49	4
Nickel	21	1.9	mg	/Kg	10/18/13 21:56	10/21/13 17:49	4
Chromium	21	1.9	mg	/Kg	10/18/13 21:56	10/21/13 17:49	4
Arsenic	4.4	3.7	mg	/Kg	10/18/13 21:56	10/21/13 17:49	4
Barium	110	1.9	mg	/Kg	10/18/13 21:56	10/21/13 17:49	4
Silver	ND	0.93	mg	/Kg	10/18/13 21:56	10/21/13 17:49	4
Selenium	ND	3.7	mg	/Kg	10/18/13 21:56	10/21/13 17:49	4

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

6

#### Client Sample ID: B-1-1.0 Lab Sample ID: 720-53093-1 Date Collected: 10/16/13 09:35 Matrix: Solid Date Received: 10/16/13 17:10 Method: 7471A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.0086 10/24/13 22:09 Mercury 0.065 mg/Kg 10/25/13 15:38 1

### TestAmerica Job ID: 720-53093-1

Matrix: Solid

5 6 7

Lab Sample ID: 720-53093-3
Matrix: Solid

Client Sample ID: B-2-1.0
Date Collected: 10/16/13 09:50
Date Received: 10/16/13 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Dieldrin	3.4		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Endrin aldehyde	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Endrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Endrin ketone	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Heptachlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	8
Heptachlor epoxide	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
4,4'-DDT	6.5		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
4,4'-DDE	2.4		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
4,4'-DDD	2.7	р	2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Endosulfan I	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Endosulfan II	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
alpha-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
beta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
gamma-BHC (Lindane)	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
delta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Endosulfan sulfate	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Methoxychlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Toxaphene	ND		40		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
Chlordane (technical)	ND		40		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
alpha-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	
gamma-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:18	1	

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	82	57 - 122	10/21/13 11:21	10/22/13 02:18	1
DCB Decachlorobiphenyl	131	21 - 136	10/21/13 11:21	10/22/13 02:18	1

# Method: 8151A - Herbicides (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		320		ug/Kg		10/21/13 00:26	10/22/13 07:28	10
Dichlorprop	ND		320		ug/Kg		10/21/13 00:26	10/22/13 07:28	10
2,4-D	ND		320		ug/Kg		10/21/13 00:26	10/22/13 07:28	10
Silvex (2,4,5-TP)	ND		320		ug/Kg		10/21/13 00:26	10/22/13 07:28	10
2,4,5-T	ND		320		ug/Kg		10/21/13 00:26	10/22/13 07:28	10
2,4-DB	ND		320		ug/Kg		10/21/13 00:26	10/22/13 07:28	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	59		32 - 122				10/21/13 00:26	10/22/13 07:28	10

### Method: 6010B - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1400		1.8		mg/Kg		10/18/13 21:56	10/21/13 18:01	4
Cadmium	3.4		0.46		mg/Kg		10/18/13 21:56	10/21/13 18:01	4
Nickel	35		1.8		mg/Kg		10/18/13 21:56	10/21/13 18:01	4
Chromium	35		1.8		mg/Kg		10/18/13 21:56	10/21/13 18:01	4
Arsenic	6.8		3.7		mg/Kg		10/18/13 21:56	10/21/13 18:01	4
Barium	380		1.8		mg/Kg		10/18/13 21:56	10/21/13 18:01	4
Silver	ND		0.92		mg/Kg		10/18/13 21:56	10/21/13 18:01	4
Selenium	ND		3.7		mg/Kg		10/18/13 21:56	10/21/13 18:01	4

Client: Vista Environmental Consulting, Inc

TestAmerica Job ID: 720-53093-1

6

#### Project/Site: Boston/Hampton Road Sites Client Sample ID: B-2-1.0 Lab Sample ID: 720-53093-3 Date Collected: 10/16/13 09:50 Matrix: Solid Date Received: 10/16/13 17:10 Method: 7471A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.0091 10/24/13 22:09 10/25/13 15:43 Mercury 0.40 mg/Kg 1

### TestAmerica Job ID: 720-53093-1

5
6
8
9
13

Lab Sample ID: 720-53093-5 Matrix: Solid

Client Sample ID: B-3-1.0
Date Collected: 10/16/13 10:05
Date Received: 10/16/13 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Dieldrin	13		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Endrin aldehyde	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Endrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Endrin ketone	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Heptachlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Heptachlor epoxide	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
4,4'-DDT	16		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
4,4'-DDE	3.1		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
4,4'-DDD	14		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Endosulfan I	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Endosulfan II	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
alpha-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
beta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
gamma-BHC (Lindane)	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
delta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Endosulfan sulfate	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Methoxychlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Toxaphene	ND		40		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Chlordane (technical)	ND		40		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
alpha-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
gamma-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93		57 - 122				10/21/13 11:21	10/22/13 02:35	1
DCB Decachlorobiphenyl	92		21 - 136				10/21/13 11:21	10/22/13 02:35	1

Method: 8151A - Herbicides (G	C)
-------------------------------	----

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		330		ug/Kg		10/21/13 00:26	10/22/13 07:50	10
Dichlorprop	ND		330		ug/Kg		10/21/13 00:26	10/22/13 07:50	10
2,4-D	ND		330		ug/Kg		10/21/13 00:26	10/22/13 07:50	10
Silvex (2,4,5-TP)	ND		330		ug/Kg		10/21/13 00:26	10/22/13 07:50	10
2,4,5-T	ND		330		ug/Kg		10/21/13 00:26	10/22/13 07:50	10
2,4-DB	ND		330		ug/Kg		10/21/13 00:26	10/22/13 07:50	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	56		32 - 122				10/21/13 00:26	10/22/13 07:50	10

## Method: 6010B - Metals (ICP)

Analyte F	esult Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
Lead	670	1.8	n	ng/Kg		10/18/13 21:56	10/21/13 18:06	4
Cadmium	1.0	0.45	n	ng/Kg		10/18/13 21:56	10/21/13 18:06	4
Nickel	35	1.8	n	ng/Kg		10/18/13 21:56	10/21/13 18:06	4
Chromium	36	1.8	n	mg/Kg		10/18/13 21:56	10/21/13 18:06	4
Arsenic	4.9	3.6	n	ng/Kg		10/18/13 21:56	10/21/13 18:06	4
Barium	390	1.8	n	ng/Kg		10/18/13 21:56	10/21/13 18:06	4
Silver	ND	0.91	n	ng/Kg		10/18/13 21:56	10/21/13 18:06	4
Selenium	ND	3.6	n	ng/Kg		10/18/13 21:56	10/21/13 18:06	4

Client: Vista Environmental Consulting, Inc

TestAmerica Job ID: 720-53093-1

6

#### Project/Site: Boston/Hampton Road Sites Client Sample ID: B-3-1.0 Lab Sample ID: 720-53093-5 Date Collected: 10/16/13 10:05 Matrix: Solid Date Received: 10/16/13 17:10 Method: 7471A - Mercury (CVAA) Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 0.0091 10/24/13 22:09 10/25/13 15:45 Mercury 0.20 mg/Kg 1

Client Sample ID: B-4-1.0

### TestAmerica Job ID: 720-53093-1

6

# Lab Sample ID: 720-53093-7

Matrix: Solid

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

10/21/13 11:21 10/22/13 02:52

Date Collected: 10/16/13 10:2							Lab Sam	Die ID: 720-5. Matri
ate Received: 10/16/13 17:1	0							
Method: 8081A - Organochi						_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed
Aldrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Dieldrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Endrin aldehyde	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Endrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Endrin ketone	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Heptachlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Heptachlor epoxide	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
4,4'-DDT	2.4	p	2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
4,4'-DDE	2.9		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
4,4'-DDD	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Endosulfan I	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Endosulfan II	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
alpha-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
beta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
gamma-BHC (Lindane)	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
delta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Endosulfan sulfate	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Methoxychlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Toxaphene	ND		40		ug/Kg		10/21/13 11:21	10/22/13 02:52
Chlordane (technical)	ND		40		ug/Kg		10/21/13 11:21	10/22/13 02:52
alpha-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
gamma-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 02:52
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
Tetrachloro-m-xylene	85		57 _ 122				10/21/13 11:21	10/22/13 02:52

Tetrachloro-m-xylene
DCB Decachlorobiphenyl

Method:	8151A	- Herbicides	(GC)
methou.	O IO IA		$(\mathbf{U}\mathbf{U})$

Analyte	Result	Qualifier RL	MDL Uni	it D	Prepared	Analyzed	Dil Fac
Dicamba	ND	320	ug/	Kg —	10/21/13 00:26	10/22/13 08:12	10
Dichlorprop	ND	320	ug/	Кg	10/21/13 00:26	10/22/13 08:12	10
2,4-D	ND	320	ug/	Кg	10/21/13 00:26	10/22/13 08:12	10
Silvex (2,4,5-TP)	ND	320	ug/	Кg	10/21/13 00:26	10/22/13 08:12	10
2,4,5-T	ND	320	ug/	Кg	10/21/13 00:26	10/22/13 08:12	10
2,4-DB	ND	320	ug/	Kg	10/21/13 00:26	10/22/13 08:12	10
Surrogate	%Recovery	Qualifier Limits			Prepared	Analyzed	Dil Fac
DCAA	58	32 - 122			10/21/13 00:26	10/22/13 08:12	10

21 - 136

97

## Method: 6010B - Metals (ICP)

Analyte	Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	55	·	.7	mg/Kg		10/18/13 21:56	10/21/13 18:10	4
Cadmium	0.46	0.	42	mg/Kg		10/18/13 21:56	10/21/13 18:10	4
Nickel	41		.7	mg/Kg		10/18/13 21:56	10/21/13 18:10	4
Chromium	41		.7	mg/Kg		10/18/13 21:56	10/21/13 18:10	4
Arsenic	9.0	:	.4	mg/Kg		10/18/13 21:56	10/21/13 18:10	4
Barium	170		.7	mg/Kg		10/18/13 21:56	10/21/13 18:10	4
Silver	ND	0.	35	mg/Kg		10/18/13 21:56	10/21/13 18:10	4
Selenium	ND	:	.4	mg/Kg		10/18/13 21:56	10/21/13 18:10	4

Client: Vista Environmental Consulting, Inc

TestAmerica Job ID: 720-53093-1

6

#### Project/Site: Boston/Hampton Road Sites Client Sample ID: B-4-1.0 Lab Sample ID: 720-53093-7 Date Collected: 10/16/13 10:25 Matrix: Solid Date Received: 10/16/13 17:10 Method: 7471A - Mercury (CVAA) Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 0.0095 10/24/13 22:09 10/25/13 15:47 Mercury 0.12 mg/Kg 1

### TestAmerica Job ID: 720-53093-1

d	
_	
c	5
1	
1	6
1	
1	
1	
1	8
1	
1	9
1	
1	
1	
1	

	3

Lab Sample	ID: 720-53093-9
	Matrix: Solid

Client Sample ID: B-5-1.0 Date Collected: 10/16/13 10:45 Date Received: 10/16/13 17:10

Method: 8081A - Organoch	Iorine Pesticides (GC	C)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Dieldrin	180		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Endrin aldehyde	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Endrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Endrin ketone	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Heptachlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Heptachlor epoxide	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
4,4'-DDT	46		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
4,4'-DDE	95		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
4,4'-DDD	51		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Endosulfan I	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Endosulfan II	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
alpha-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
beta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
gamma-BHC (Lindane)	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
delta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Endosulfan sulfate	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Methoxychlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Toxaphene	ND		40		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Chlordane (technical)	ND		40		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
alpha-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
gamma-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		57 _ 122	10/21/13 11:2	1 10/22/13 03:09	1
DCB Decachlorobiphenyl	112		21 - 136	10/21/13 11:2	1 10/22/13 03:09	1

# Method: 8151A - Herbicides (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:35	10
Dichlorprop	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:35	10
2,4-D	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:35	10
Silvex (2,4,5-TP)	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:35	10
2,4,5-T	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:35	10
2,4-DB	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:35	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	60		32 - 122				10/21/13 00:26	10/22/13 08:35	10

# Method: 6010B - Metals (ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	84		1.8		mg/Kg		10/18/13 21:56	10/21/13 18:14	4
Cadmium	0.49		0.44		mg/Kg		10/18/13 21:56	10/21/13 18:14	4
Nickel	42		1.8		mg/Kg		10/18/13 21:56	10/21/13 18:14	4
Chromium	41		1.8		mg/Kg		10/18/13 21:56	10/21/13 18:14	4
Arsenic	6.6		3.5		mg/Kg		10/18/13 21:56	10/21/13 18:14	4
Barium	180		1.8		mg/Kg		10/18/13 21:56	10/21/13 18:14	4
Silver	ND		0.88		mg/Kg		10/18/13 21:56	10/21/13 18:14	4
Selenium	ND		3.5		mg/Kg		10/18/13 21:56	10/21/13 18:14	4

Client: Vista Environmental Consulting, Inc

TestAmerica Job ID: 720-53093-1

6

#### Project/Site: Boston/Hampton Road Sites Client Sample ID: B-5-1.0 Lab Sample ID: 720-53093-9 Date Collected: 10/16/13 10:45 Matrix: Solid Date Received: 10/16/13 17:10 Method: 7471A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.0098 10/24/13 22:09 10/25/13 15:54 Mercury 0.12 mg/Kg 1

# Lab Sample ID: 720-53093-11 Matrix: Solid

Date Collected: 10/16/13 11:25 Date Received: 10/16/13 17:10

Client Sample ID: B-6-1.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Dieldrin	3.2		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Endrin aldehyde	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Endrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Endrin ketone	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Heptachlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Heptachlor epoxide	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
4,4'-DDT	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
4,4'-DDE	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
4,4'-DDD	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Endosulfan I	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Endosulfan II	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
alpha-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
beta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
gamma-BHC (Lindane)	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
delta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Endosulfan sulfate	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Methoxychlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Toxaphene	ND		40		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
Chlordane (technical)	ND		40		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
alpha-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1
gamma-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:26	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		57 _ 122	10/21/13 11:21	10/22/13 03:26	1
DCB Decachlorobiphenyl	111		21 - 136	10/21/13 11:21	10/22/13 03:26	1

### Method: 8151A - Herbicides (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:58	10
Dichlorprop	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:58	10
2,4-D	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:58	10
Silvex (2,4,5-TP)	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:58	10
2,4,5-T	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:58	10
2,4-DB	ND		330		ug/Kg		10/21/13 00:26	10/22/13 08:58	10
Surrogate	%Recovery	Qualifier Li	mits				Prepared	Analyzed	Dil Fac
DCAA	44	32	- 122				10/21/13 00:26	10/22/13 08:58	10

### Method: 6010B - Metals (ICP)

Analyte	Result Q	ualifier RL	MDL Ur	nit	D	Prepared	Analyzed	Dil Fac
Lead	38	1.7	m	g/Kg		10/18/13 21:56	10/21/13 18:18	4
Cadmium	ND	0.43	mę	g/Kg		10/18/13 21:56	10/21/13 18:18	4
Nickel	39	1.7	mę	g/Kg		10/18/13 21:56	10/21/13 18:18	4
Chromium	39	1.7	mę	g/Kg		10/18/13 21:56	10/21/13 18:18	4
Arsenic	5.2	3.5	mę	g/Kg		10/18/13 21:56	10/21/13 18:18	4
Barium	160	1.7	mę	g/Kg		10/18/13 21:56	10/21/13 18:18	4
Silver	ND	0.87	mę	g/Kg		10/18/13 21:56	10/21/13 18:18	4
Selenium	ND	3.5	mę	g/Kg		10/18/13 21:56	10/21/13 18:18	4

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

6

#### Client Sample ID: B-6-1.0 Lab Sample ID: 720-53093-11 Date Collected: 10/16/13 11:25 Matrix: Solid Date Received: 10/16/13 17:10 Method: 7471A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.0097 10/24/13 22:09 10/25/13 15:57 Mercury 0.075 mg/Kg 1

# Lab Sample ID: 720-53093-13 Matrix: Solid

Date Collected: 10/16/13 11:45 Date Received: 10/16/13 17:10

Client Sample ID: B-7-1.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Dieldrin	1100		20		ug/Kg		10/21/13 11:21	10/22/13 08:12	10	
Endrin aldehyde	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	Ē
Endrin	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Endrin ketone	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Heptachlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Heptachlor epoxide	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	2
4,4'-DDT	77		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
4,4'-DDE	36		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
4,4'-DDD	75	p	2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Endosulfan I	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Endosulfan II	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
alpha-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
beta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
gamma-BHC (Lindane)	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
delta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Endosulfan sulfate	33		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Methoxychlor	ND		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Toxaphene	ND		40		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Chlordane (technical)	63	р	40		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
alpha-Chlordane	2.4	р	2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
gamma-Chlordane	3.7		2.0		ug/Kg		10/21/13 11:21	10/22/13 03:43	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	87		57 _ 122				10/21/13 11:21	10/22/13 03:43	1	
DCB Decachlorobiphenyl	123		21 - 136				10/21/13 11:21	10/22/13 03:43	1	

#### Method: 8151A - Herbicides (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		330		ug/Kg		10/21/13 00:26	10/22/13 10:05	10
Dichlorprop	ND		330		ug/Kg		10/21/13 00:26	10/22/13 10:05	10
2,4-D	ND		330		ug/Kg		10/21/13 00:26	10/22/13 10:05	10
Silvex (2,4,5-TP)	ND		330		ug/Kg		10/21/13 00:26	10/22/13 10:05	10
2,4,5-T	ND		330		ug/Kg		10/21/13 00:26	10/22/13 10:05	10
2,4-DB	ND		330		ug/Kg		10/21/13 00:26	10/22/13 10:05	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	66		32 - 122				10/21/13 00:26	10/22/13 10:05	10

### Method: 6010B - Metals (ICP)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	100	1.4	mg/Kg		10/18/13 21:56	10/21/13 18:23	4
Cadmium	0.82	0.36	mg/Kg		10/18/13 21:56	10/21/13 18:23	4
Nickel	28	1.4	mg/Kg		10/18/13 21:56	10/21/13 18:23	4
Chromium	28	1.4	mg/Kg		10/18/13 21:56	10/21/13 18:23	4
Arsenic	12	2.9	mg/Kg		10/18/13 21:56	10/21/13 18:23	4
Barium	220	1.4	mg/Kg		10/18/13 21:56	10/21/13 18:23	4
Silver	ND	0.72	mg/Kg		10/18/13 21:56	10/21/13 18:23	4
Selenium	ND	2.9	mg/Kg		10/18/13 21:56	10/21/13 18:23	4

Client: Vista Environmental Consulting, Inc

Project/Site: Boston/Hampton Road Sites

TestAmerica Job ID: 720-53093-1

6

#### Client Sample ID: B-7-1.0 Lab Sample ID: 720-53093-13 Date Collected: 10/16/13 11:45 Matrix: Solid Date Received: 10/16/13 17:10 Method: 7471A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.0092 10/24/13 22:09 10/25/13 15:59 Mercury 0.35 mg/Kg 1

# Lab Sample ID: 720-53093-15 Matrix: Solid

5

6

Date Collected: 10/16/13 12:20 Date Received: 10/16/13 17:10

Client Sample ID: B-8-1.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ndrin	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	· · ·
Dieldrin	1200		19		ug/Kg		10/21/13 11:21	10/22/13 08:29	10
ndrin aldehyde	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
ndrin	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
ndrin ketone	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
leptachlor	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
leptachlor epoxide	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	• • • • • • •
,4'-DDT	220		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
I,4'-DDE	180		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
,4'-DDD	290		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
Endosulfan I	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
Endosulfan II	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
lpha-BHC	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
beta-BHC	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
jamma-BHC (Lindane)	17		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
lelta-BHC	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
Endosulfan sulfate	34		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
lethoxychlor	ND		1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
oxaphene	ND		39		ug/Kg		10/21/13 11:21	10/22/13 03:59	
Chlordane (technical)	60	n	39		ug/Kg		10/21/13 11:21	10/22/13 03:59	
Ipha-Chlordane	6.7	1 - C	1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
jamma-Chlordane	11	P	1.9		ug/Kg		10/21/13 11:21	10/22/13 03:59	
anina-chioruane			1.0		uging		10/21/10 11.21	10/22/10 00:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
etrachloro-m-xylene	108		57 - 122				10/21/13 11:21	10/22/13 03:59	
CR Desechlershiph	108	n							
ось Decachioropiphenyi	100	ρ	21 - 136				10/21/13 11:21	10/22/13 03:59	
OCB Decachlorobiphenyl	100	P	21 - 136				10/21/13 11:21	10/22/13 03:59	
Method: 8151A - Herbicides (GC	)						10/21/13 11:21		
Method: 8151A - Herbicides (GC Analyte	) Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Method: 8151A - Herbicides (GC Analyte Dichlorprop	) ResultND		RL	MDL	ug/Kg	<u>D</u>			Dil Fa
<b>Nethod: 8151A - Herbicides (GC</b> Inalyte Dichlorprop	) ND ND		<b>RL</b> 330 330	MDL	ug/Kg ug/Kg	<u>D</u>	Prepared	Analyzed 10/22/13 10:28 10/22/13 10:28	<b>Dil Fa</b> 1(
<b>Nethod: 8151A - Herbicides (GC</b> Analyte Dichlorprop ,4-D	) ResultND		RL	MDL	ug/Kg	D	Prepared 10/21/13 00:26	Analyzed	<b>Dil Fa</b> 1(
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP)	) ND ND		<b>RL</b> 330 330	MDL	ug/Kg ug/Kg	<u>D</u>	Prepared 10/21/13 00:26 10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28	
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP) 2,4,5-T	) ND ND ND		<b>RL</b> 330 330 330	MDL	ug/Kg ug/Kg ug/Kg	<u>D</u>	<b>Prepared</b> 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28	Dil Fac 10 10 10 10
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP) 2,4,5-T 2,4-DB	) Result ND ND ND ND ND	Qualifier	RL 330 330 330 330 330 330	MDL	ug/Kg ug/Kg ug/Kg ug/Kg	<u>D</u>	Prepared 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28	<b>Dil Fa</b> ( 10 10 10 10 10
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP) 2,4,5-T 2,4-DB Surrogate	) Result ND	Qualifier	RL           330           330           330           330           330           330           330           330           330           330           330           330           330           Limits	MDL	ug/Kg ug/Kg ug/Kg ug/Kg	<u>D</u>	Prepared 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 Prepared	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed	Dil Fac 1( 1( 1( 1( 1( Dil Fac
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP) 2,4,5-T	) Result ND ND ND ND ND	Qualifier	RL 330 330 330 330 330 330	MDL	ug/Kg ug/Kg ug/Kg ug/Kg	<u> </u>	Prepared 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28	<b>Dil Fa</b> ( 10 10 10 10 10
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP) 2,4,5-T 2,4-DB Surrogate DCAA	) Result ND ND ND ND ND ND ND SD S59	Qualifier	RL           330           330           330           330           330           330           330           330           330           330           330           330           330           Limits	MDL	ug/Kg ug/Kg ug/Kg ug/Kg	<u>D</u>	Prepared 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 Prepared	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed	Dil Fa 10 10 10 10 10 10 10 10
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP) 2,4,5-T 2,4-DB Surrogate DCAA Method: 8151A - Herbicides (GC	() Result ND ND ND ND ND ND ND ND ND - DL	Qualifier Qualifier	RL           330           330           330           330           330           330           330           330           330           330           330           330           330           330           330           330           32 - 122		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 0/21/13 00:26 Prepared 10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed 10/22/13 10:28	Dil Fa 10 10 10 10 10 10 10 10 10 70
Method: 8151A - Herbicides (GC malyte Dichlorprop 4-D Silvex (2,4,5-TP) 4,4-DB Surrogate DCAA Method: 8151A - Herbicides (GC malyte	) Result ND ND ND ND ND SP On the second	Qualifier	RL         330         330         330         330         330         330         330         330         32 - 122         RL	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg	D	Prepared 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 0/21/13 00:26 Prepared 10/21/13 00:26 Prepared	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed 10/22/13 10:28	Dil Fa 11 11 11 11 11 10 11 11 11 11 11 11 11
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP) 2,4-DB Surrogate	() Result ND ND ND ND ND ND ND ND ND - DL	Qualifier Qualifier	RL           330           330           330           330           330           330           330           330           330           330           330           330           330           330           330           330           32 - 122		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 0/21/13 00:26 Prepared 10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed 10/22/13 10:28	Dil Fa 10 10 10 10 10 10 10 10 10 70
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP) 2,4,5-T 2,4-DB Surrogate DCAA Method: 8151A - Herbicides (GC Analyte Dicamba	) Result ND ND ND ND ND SP On the second	Qualifier Qualifier	RL         330         330         330         330         330         330         330         330         32 - 122         RL		ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 0/21/13 00:26 Prepared 10/21/13 00:26 Prepared	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed 10/22/13 10:28	Dil Fa 11 11 11 11 11 10 11 11 11 11 11 11 11
Method: 8151A - Herbicides (GC malyte Dichlorprop 4-D Sillvex (2,4,5-TP) 4,5-T 4-DB Surrogate DCAA Method: 8151A - Herbicides (GC malyte Dicamba Method: 6010B - Metals (ICP)	e) Result ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	RL         330         330         330         330         330         330         330         330         32 - 122         RL	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg		Prepared           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           Prepared           10/21/13 00:26           Prepared           10/21/13 00:26           10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed 10/22/13 10:28 Analyzed 10/22/13 19:17	Dil Fa 11 11 11 11 11 10 11 11 11 11 11 11 11
Method: 8151A - Herbicides (GC unalyte bichlorprop ,4-D silvex (2,4,5-TP) ,4,5-T ,4-DB Surrogate DCAA Method: 8151A - Herbicides (GC unalyte Dicamba Method: 6010B - Metals (ICP) unalyte	e) Result ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier Qualifier	RL         330         330         330         330         330         330         330         330         330         330         330         330         330         32 - 122         RL         1600         RL	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Unit Unit	D	Prepared           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           Prepared           10/21/13 00:26           Prepared           10/21/13 00:26           Prepared           10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed 10/22/13 10:28 Analyzed 10/22/13 19:17 Analyzed	Dil Fa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: 8151A - Herbicides (GC inalyte bichlorprop ,4-D illvex (2,4,5-TP) ,4,5-T ,4-DB surrogate DCAA Method: 8151A - Herbicides (GC inalyte bicamba Method: 6010B - Metals (ICP) inalyte ead	e) Result ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier Qualifier	RL           330           330           330           330           330           330           32 - 122           RL           1600           RL           11,9	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Unit ug/Kg	D	Prepared           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           Prepared           10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed 10/22/13 10:28 Analyzed 10/22/13 19:17 Analyzed 10/21/13 18:27	Dil Fa 1 1 1 1 1 1 Dil Fa 1 Dil Fa 5 Dil Fa
Method: 8151A - Herbicides (GC malyte bichlorprop ,4-D silvex (2,4,5-TP) ,4,5-T ,4-DB Surrogate DCAA Method: 8151A - Herbicides (GC malyte bicamba Method: 6010B - Metals (ICP) malyte sead cadmium	e) Result ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier Qualifier	RL         330         330         330         330         330         330         32 - 122         RL         1600         RL         19         0.46	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Unit ug/Kg Unit mg/Kg mg/Kg	D	Prepared           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           Prepared           10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed 10/22/13 10:28 Analyzed 10/22/13 19:17 Analyzed 10/22/13 19:17 10/21/13 18:27 10/21/13 18:27	Dil Fa 1 1 1 1 1 1 Dil Fa 1 Dil Fa 5 Dil Fa
Method: 8151A - Herbicides (GC malyte Dichlorprop ;4-D Silvex (2,4,5-TP) ;4-DB Surrogate DCAA Method: 8151A - Herbicides (GC malyte Dicamba Method: 6010B - Metals (ICP) malyte sead Cadmium lickel	e) Result ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier Qualifier	RL           330           330           330           330           330           330           330           330           32 - 122           RL           1600           RL           1.9	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Unit ug/Kg Unit mg/Kg mg/Kg	D	Prepared 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 10/21/13 00:26 Prepared 10/21/13 00:26 Prepared 10/21/13 00:26 Prepared 10/18/13 21:56 10/18/13 21:56	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 <b>Analyzed</b> 10/22/13 10:28 <b>Analyzed</b> 10/22/13 19:17 <b>Analyzed</b> 10/21/13 18:27 10/21/13 18:27 10/21/13 18:27	Dil Fa 11 11 11 11 11 11 11 11 11 11 11 11 11
Method: 8151A - Herbicides (GC Analyte Dichlorprop 2,4-D Silvex (2,4,5-TP) 2,4,5-T 2,4-DB Surrogate DCAA Method: 8151A - Herbicides (GC Analyte	e) Result ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier Qualifier	RL         330         330         330         330         330         330         32 - 122         RL         1600         RL         19         0.46	MDL	ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Unit ug/Kg Unit mg/Kg mg/Kg	D	Prepared           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           10/21/13 00:26           Prepared           10/21/13 00:26	Analyzed 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 10/22/13 10:28 Analyzed 10/22/13 10:28 Analyzed 10/22/13 19:17 Analyzed 10/22/13 19:17 10/21/13 18:27 10/21/13 18:27	Dil Fa 1 1 1 1 1 1 Dil Fa 1 Dil Fa 5 Dil Fa

Lab Sample ID: 720-53093-15

Matrix: Solid

# Client Sample ID: B-8-1.0 Date Collected: 10/16/13 12:20 Date Received: 10/16/13 17:10

Method: 6010B - Metals (ICP) (Contine	ued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Silver	ND		0.93		mg/Kg		10/18/13 21:56	10/21/13 18:27	4
Selenium	ND		3.7		mg/Kg		10/18/13 21:56	10/21/13 18:27	4
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.081		0.0095		mg/Kg		10/24/13 22:09	10/25/13 16:01	1

# Client Sample ID: B-9-1.0 Date Collected: 10/16/13 07:20

Date Received: 10/16/13 17:10

Analyte	Result	Qualifier	RL	MDL Unit		D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Dieldrin	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Endrin aldehyde	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Endrin	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Endrin ketone	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Heptachlor	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Heptachlor epoxide	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
4,4'-DDT	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
4,4'-DDE	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
4,4'-DDD	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Endosulfan I	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Endosulfan II	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
alpha-BHC	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
beta-BHC	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
gamma-BHC (Lindane)	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
delta-BHC	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Endosulfan sulfate	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Methoxychlor	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Toxaphene	ND		39	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Chlordane (technical)	ND		39	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
alpha-Chlordane	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
gamma-Chlordane	ND		2.0	ug/K	g		10/21/13 11:21	10/22/13 04:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	85		57 - 122				10/21/13 11:21	10/22/13 04:16	1
DCB Decachlorobiphenyl	89	p	21 - 136				10/21/13 11:21	10/22/13 04:16	1

### Method: 8151A - Herbicides (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		320		ug/Kg		10/21/13 00:26	10/22/13 10:51	10
Dichlorprop	ND		320		ug/Kg		10/21/13 00:26	10/22/13 10:51	10
2,4-D	ND		320		ug/Kg		10/21/13 00:26	10/22/13 10:51	10
Silvex (2,4,5-TP)	ND		320		ug/Kg		10/21/13 00:26	10/22/13 10:51	10
2,4,5-T	ND		320		ug/Kg		10/21/13 00:26	10/22/13 10:51	10
2,4-DB	ND		320		ug/Kg		10/21/13 00:26	10/22/13 10:51	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	59		32 - 122				10/21/13 00:26	10/22/13 10:51	10

10/28/2013

Lab Sample ID: 720-53093-17

Matrix: Solid

## TestAmerica Job ID: 720-53093-1

# Lab Sample ID: 720-53093-19 Matrix: Solid

Date Collected: 10/16/13 07:40 Date Received: 10/16/13 17:10

Client Sample ID: B-10-1.0

Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Dieldrin	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Endrin aldehyde	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Endrin	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Endrin ketone	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Heptachlor	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Heptachlor epoxide	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
4,4'-DDT	92		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
4,4'-DDE	490		20	u	ıg/Kg		10/21/13 11:21	10/22/13 09:03	10
4,4'-DDD	110	p	2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Endosulfan I	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Endosulfan II	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
alpha-BHC	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
beta-BHC	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
gamma-BHC (Lindane)	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
delta-BHC	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Endosulfan sulfate	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Methoxychlor	ND		2.0	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Toxaphene	ND		40	u	ıg/Kg		10/21/13 11:21	10/22/13 04:33	1
Chlordane (technical)	3200		400	u	ıg/Kg		10/21/13 11:21	10/22/13 09:03	10
alpha-Chlordane	1100		20	u	ıg/Kg		10/21/13 11:21	10/22/13 09:03	10
gamma-Chlordane	800		20	u	ıg/Kg		10/21/13 11:21	10/22/13 09:03	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	72		57 - 122				10/21/13 11:21	10/22/13 04:33	1
DCB Decachlorobiphenyl	31	p	21 - 136				10/21/13 11:21	10/22/13 04:33	1
Method: 8151A - Herbicides (GC)									
Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		330	u	ıg/Kg		10/21/13 00:26	10/22/13 11:13	10
Dichlorprop	ND		330	u	ıg/Kg		10/21/13 00:26	10/22/13 11:13	10
2,4-D	ND		330	u	ıg/Kg		10/21/13 00:26	10/22/13 11:13	10
Silvex (2,4,5-TP)	ND		330	u	ıg/Kg		10/21/13 00:26	10/22/13 11:13	10
2,4,5-T	ND		330	u	ıg/Kg		10/21/13 00:26	10/22/13 11:13	10
2.4-DB	ND		330		ig/Kg		10/21/13 00:26	10/22/13 11:13	10

Surrogate	%Recovery Q	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCAA	81		32 - 122	10/21/13 00:26	10/22/13 11:13	10

# Client Sample ID: B-11-1.0 Date Collected: 10/16/13 08:05

Date Received: 10/16/13 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Dieldrin	6.9		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	6
Endrin aldehyde	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Endrin	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Endrin ketone	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Heptachlor	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	8
Heptachlor epoxide	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
4,4'-DDT	25		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
4,4'-DDE	16		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
4,4'-DDD	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Endosulfan I	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Endosulfan II	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
alpha-BHC	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
beta-BHC	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
gamma-BHC (Lindane)	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
delta-BHC	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Endosulfan sulfate	3.0		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Methoxychlor	ND		2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Toxaphene	ND		40		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Chlordane (technical)	110		40		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
alpha-Chlordane	20	р	2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
gamma-Chlordane	11	p	2.0		ug/Kg		10/21/13 14:16	10/22/13 20:39	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	101		57 _ 122				10/21/13 14:16	10/22/13 20:39	1	
DCB Decachlorobiphenyl	126		21 - 136				10/21/13 14:16	10/22/13 20:39	1	
_ Method: 8151A - Herbicides (GC)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Dicamba	ND		320		ug/Kg		10/21/13 00:26	10/22/13 11:36	10	
Dichlorprop	ND		320		ug/Kg		10/21/13 00:26	10/22/13 11:36	10	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		320		ug/Kg		10/21/13 00:26	10/22/13 11:36	10
Dichlorprop	ND		320		ug/Kg		10/21/13 00:26	10/22/13 11:36	10
2,4-D	ND		320		ug/Kg		10/21/13 00:26	10/22/13 11:36	10
Silvex (2,4,5-TP)	ND		320		ug/Kg		10/21/13 00:26	10/22/13 11:36	10
2,4,5-T	ND		320		ug/Kg		10/21/13 00:26	10/22/13 11:36	10
2,4-DB	ND		320		ug/Kg		10/21/13 00:26	10/22/13 11:36	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	42		32 - 122				10/21/13 00:26	10/22/13 11:36	10

Lab Sample ID: 720-53093-21

Matrix: Solid
Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Method: 8081A - Organochlorine Pesticides (GC)

## Client Sample ID: B-12-1.0

Date Collected: 10/16/13 08:20 Date Received: 10/16/13 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Dieldrin	300		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Endrin aldehyde	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Endrin	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Endrin ketone	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Heptachlor	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Heptachlor epoxide	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
4,4'-DDT	310		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
4,4'-DDE	55		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
4,4'-DDD	10	p	9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Endosulfan I	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Endosulfan II	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
alpha-BHC	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
beta-BHC	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
gamma-BHC (Lindane)	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
delta-BHC	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Endosulfan sulfate	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Methoxychlor	ND		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Toxaphene	ND		200		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Chlordane (technical)	ND		200		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
alpha-Chlordane	16	р	9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
gamma-Chlordane	14		9.8		ug/Kg		10/21/13 14:16	10/23/13 16:56	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	112		57 - 122				10/21/13 14:16	10/23/13 16:56	5
DCB Decachlorobiphenyl	135		21 - 136				10/21/13 14:16	10/23/13 16:56	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		330		ug/Kg		10/21/13 00:26	10/22/13 11:59	10
Dichlorprop	ND		330		ug/Kg		10/21/13 00:26	10/22/13 11:59	10
2,4-D	ND		330		ug/Kg		10/21/13 00:26	10/22/13 11:59	10
Silvex (2,4,5-TP)	ND		330		ug/Kg		10/21/13 00:26	10/22/13 11:59	10
2,4,5-T	ND		330		ug/Kg		10/21/13 00:26	10/22/13 11:59	10
2,4-DB	ND		330		ug/Kg		10/21/13 00:26	10/22/13 11:59	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	72		32 - 122				10/21/13 00:26	10/22/13 11:59	10

Lab Sample ID: 720-53093-23

Matrix: Solid

Lab Sample ID: MB 720-146662/1-A

5

# 7

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 146662

### Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid								Prep Type: 1	Total/NA
Analysis Batch: 146710								Prep Batch:	146662
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Dieldrin	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Endrin aldehyde	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Endrin	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Endrin ketone	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Heptachlor	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Heptachlor epoxide	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
4,4'-DDT	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
4,4'-DDE	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
4,4'-DDD	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Endosulfan I	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Endosulfan II	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
alpha-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
beta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
gamma-BHC (Lindane)	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
delta-BHC	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Endosulfan sulfate	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Methoxychlor	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Toxaphene	ND		40		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
Chlordane (technical)	ND		40		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
alpha-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
gamma-Chlordane	ND		2.0		ug/Kg		10/21/13 11:21	10/21/13 23:30	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	96	57 - 122	10/21/13 11:21	10/21/13 23:30	1
DCB Decachlorobiphenyl	112	21 - 136	10/21/13 11:21	10/21/13 23:30	1

### Lab Sample ID: LCS 720-146662/2-A Matrix: Solid

### Analysis Batch: 146732

Analysis Batch: 146732							Prep Batch: 146662
	Spike		LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	16.6	14.1		ug/Kg		85	65 - 120
Dieldrin	16.6	15.3		ug/Kg		92	72 - 120
Endrin aldehyde	16.6	15.7		ug/Kg		94	68 - 120
Endrin	16.6	15.3		ug/Kg		92	68 - 120
Endrin ketone	16.6	15.7		ug/Kg		94	67 - 120
Heptachlor	16.6	14.3		ug/Kg		86	69 - 120
Heptachlor epoxide	16.6	15.3		ug/Kg		92	68 - 120
4,4'-DDT	16.6	15.7		ug/Kg		94	63 - 127
4,4'-DDE	16.6	15.1		ug/Kg		91	70 - 120
4,4'-DDD	16.6	14.9		ug/Kg		89	69 ₋ 120
Endosulfan I	16.6	15.0		ug/Kg		90	62 - 120
Endosulfan II	16.6	15.1		ug/Kg		91	65 - 120
alpha-BHC	16.6	14.5		ug/Kg		87	62 - 120
beta-BHC	16.6	16.6		ug/Kg		100	74 ₋ 124
gamma-BHC (Lindane)	16.6	15.0		ug/Kg		90	72 - 120
delta-BHC	16.6	13.5		ug/Kg		81	64 - 120

TestAmerica Pleasanton

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

### Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 720-146662/2-A Matrix: Solid					Client	Sample	ID: Lab Control Prep Type: T	
Analysis Batch: 146732	Spike	LCS	LCS				Prep Batch: %Rec.	146662
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endosulfan sulfate	16.6	15.7		ug/Kg		94	67 _ 120	
Methoxychlor	16.6	16.6		ug/Kg		100	71 - 132	
alpha-Chlordane	16.6	15.3		ug/Kg		92	70 _ 120	
gamma-Chlordane	16.6	15.1		ug/Kg		91	68 - 120	

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	98		57 _ 122
DCB Decachlorobiphenyl	115		21 - 136

### Lab Sample ID: LCSD 720-146662/3-A

### Matrix: Solid Analysis Batch: 146732

Analysis Batch: 146732							Prep I	Batch: 1	46662
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	16.4	14.8		ug/Kg		90	65 _ 120	5	20
Dieldrin	16.4	16.3		ug/Kg		99	72 - 120	6	20
Endrin aldehyde	16.4	16.9		ug/Kg		103	68 _ 120	7	20
Endrin	16.4	16.1		ug/Kg		98	68 - 120	5	20
Endrin ketone	16.4	16.7		ug/Kg		101	67 _ 120	6	20
Heptachlor	16.4	15.0		ug/Kg		92	69 _ 120	5	20
Heptachlor epoxide	16.4	16.3		ug/Kg		99	68 _ 120	6	20
4,4'-DDT	16.4	16.8		ug/Kg		102	63 _ 127	7	20
4,4'-DDE	16.4	16.2		ug/Kg		99	70 - 120	7	20
4,4'-DDD	16.4	16.0		ug/Kg		97	69 _ 120	7	20
Endosulfan I	16.4	15.9		ug/Kg		97	62 _ 120	6	20
Endosulfan II	16.4	16.3		ug/Kg		99	65 - 120	8	35
alpha-BHC	16.4	15.3		ug/Kg		93	62 _ 120	6	20
beta-BHC	16.4	17.6		ug/Kg		107	74 - 124	6	20
gamma-BHC (Lindane)	16.4	16.0		ug/Kg		97	72 _ 120	7	20
delta-BHC	16.4	14.4		ug/Kg		88	64 _ 120	7	20
Endosulfan sulfate	16.4	16.7		ug/Kg		102	67 _ 120	7	20
Methoxychlor	16.4	17.6		ug/Kg		107	71 - 132	6	20
alpha-Chlordane	16.4	16.2		ug/Kg		98	70 - 120	6	20
gamma-Chlordane	16.4	16.1		ug/Kg		98	68 _ 120	6	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	105		57 _ 122
DCB Decachlorobiphenyl	121		21 - 136

### Lab Sample ID: 720-53093-1 MS Matrix: Solid Analysis Batch: 146710

Analysis Batch: 146710									Prep	Batch: 146662
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aldrin	ND		16.4	15.0		ug/Kg		91	53 - 120	
Dieldrin	ND		16.4	19.2		ug/Kg		112	46 _ 130	
Endrin aldehyde	ND		16.4	12.8		ug/Kg		78	40 - 120	
Endrin	ND		16.4	14.7		ug/Kg		90	32 - 143	

TestAmerica Pleasanton

Client Sample ID: B-1-1.0

67 p

Lab Sample ID: 720-53093-1 MS Matrix: Solid								C	Client Sample ID: B-1-1.0 Prep Type: Total/NA
Analysis Batch: 146710									Prep Batch: 146662
Analysis Baten. 140710	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Endrin ketone	ND		16.4	14.8		ug/Kg		90	40 - 120
Heptachlor	ND		16.4	14.7		ug/Kg		90	52 - 120
Heptachlor epoxide	ND		16.4	15.7		ug/Kg		88	40 - 120
4,4'-DDT	10		16.4	23.1		ug/Kg		80	17 - 144
4,4'-DDE	14		16.4	29.5		ug/Kg		96	40 - 120
4,4'-DDD	5.8	р	16.4	21.3		ug/Kg		95	40 - 120
Endosulfan I	ND		16.4	14.2		ug/Kg		87	40 - 120
Endosulfan II	ND		16.4	14.2		ug/Kg		87	40 - 120
alpha-BHC	ND		16.4	15.6		ug/Kg		95	40 - 120
beta-BHC	ND		16.4	16.7		ug/Kg		102	40 - 120
gamma-BHC (Lindane)	ND		16.4	15.4		ug/Kg		94	58 - 120
delta-BHC	ND		16.4	13.6		ug/Kg		83	40 - 120
Endosulfan sulfate	ND		16.4	18.2		ug/Kg		111	40 - 120
Methoxychlor	ND		16.4	11.7		ug/Kg		71	40 - 120
alpha-Chlordane	9.2	р	16.4	24.8		ug/Kg		95	40 - 120
gamma-Chlordane	ND		16.4	24.4	F	ug/Kg		142	40 - 120
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	98		57 _ 122						

21 - 136

### Lab Sample ID: 720-53093-1 MSD Matrix: Solid Analysis Batch: 146710

DCB Decachlorobiphenyl

										<b>J P e</b> · · <b>e</b> ·	
Analysis Batch: 146710										Batch: 1	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	ND		16.5	14.2		ug/Kg		86	53 _ 120	0	20
Dieldrin	ND		16.5	13.2		ug/Kg		77	46 - 130	4	20
Endrin aldehyde	ND		16.5	11.8		ug/Kg		72	40 - 120	8	20
Endrin	ND		16.5	13.4		ug/Kg		81	32 _ 143	10	20
Endrin ketone	ND		16.5	13.6		ug/Kg		83	40 - 120	2	20
Heptachlor	ND		16.5	13.0		ug/Kg		79	52 _ 120	12	20
Heptachlor epoxide	ND		16.5	14.8		ug/Kg		82	40 - 120	6	20
4,4'-DDT	10		16.5	18.4	F	ug/Kg		52	17 _ 144	22	20
4,4'-DDE	14		16.5	28.5		ug/Kg		89	40 - 120	3	20
4,4'-DDD	3.8	p	16.5	23.0	F	ug/Kg		116	40 - 120	51	20
Endosulfan I	ND		16.5	13.7		ug/Kg		83	40 - 120	3	20
Endosulfan II	ND		16.5	13.5		ug/Kg		82	40 - 120	5	30
alpha-BHC	ND		16.5	14.2		ug/Kg		87	40 - 120	9	20
beta-BHC	ND		16.5	14.4		ug/Kg		87	40 - 120	15	20
gamma-BHC (Lindane)	ND		16.5	14.0		ug/Kg		85	58 - 120	9	20
delta-BHC	ND		16.5	12.2		ug/Kg		74	40 - 120	3	20
Endosulfan sulfate	ND		16.5	15.7		ug/Kg		96	40 - 120	15	20
Methoxychlor	ND		16.5	8.87	F	ug/Kg		54	40 - 120	27	20
alpha-Chlordane	9.2	p	16.5	21.9		ug/Kg		77	40 - 120	13	20
gamma-Chlordane	14		16.5	25.5	F	ug/Kg		72	40 - 120	36	20

TestAmerica Pleasanton

Client Sample ID: B-1-1.0

Lab Sample ID: 720-53093-1 MSD

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Client Sample ID: B-1-1.0

								•	ient Sample ID.	
Matrix: Solid									Prep Type: T	
Analysis Batch: 146710									Prep Batch:	146662
	MSD MS	SD								
Surrogate %	Recovery Qu	ıalifier	Limits							
Tetrachloro-m-xylene	97		57 - 122							
DCB Decachlorobiphenyl	95		21 - 136							
Lab Sample ID: MB 720-146684/1-/	<b>A</b>							Client Sa	mple ID: Metho	d Blank
Matrix: Solid									Prep Type: T	otal/NA
Analysis Batch: 146760									Prep Batch:	146684
	М	B MB								
Analyte	Resu	It Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Dieldrin	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Endrin aldehyde	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Endrin	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Endrin ketone	Ν	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Heptachlor	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Heptachlor epoxide	Ν	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
4,4'-DDT	Ν	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
4,4'-DDE	Ν	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
4,4'-DDD	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Endosulfan I	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Endosulfan II	Ν	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
alpha-BHC	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
beta-BHC	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
gamma-BHC (Lindane)	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
delta-BHC	Ν	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Endosulfan sulfate	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Methoxychlor	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Toxaphene	N	D		40		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
Chlordane (technical)	N	D		40		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
alpha-Chlordane	N	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
gamma-Chlordane	Ν	D		2.0		ug/Kg		10/21/13 14:16	10/22/13 19:09	1
	14	B MB								

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	115		57 _ 122	10/21/13 14:16	10/22/13 19:09	1
DCB Decachlorobiphenyl	130		21 - 136	10/21/13 14:16	10/22/13 19:09	1

### Lab Sample ID: LCS 720-146684/2-A Matrix: Solid Analysis Batch: 146760

Analysis Batch: 146760							Prep Ba	atch: 146684
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aldrin	16.6	16.4		ug/Kg		99	65 - 120	
Dieldrin	16.6	17.0		ug/Kg		103	72 - 120	
Endrin aldehyde	16.6	17.7		ug/Kg		107	68 - 120	
Endrin	16.6	17.1		ug/Kg		103	68 - 120	
Endrin ketone	16.6	17.7		ug/Kg		107	67 _ 120	
Heptachlor	16.6	15.6		ug/Kg		94	69 - 120	
Heptachlor epoxide	16.6	17.0		ug/Kg		103	68 - 120	
4,4'-DDT	16.6	18.3		ug/Kg		110	63 - 127	

TestAmerica Pleasanton

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Sall	ihie	Res	uns

Lab Sample ID: LCS 720-146684/2-A					Client	Sample	ID: Lab Control Sample
Matrix: Solid Analysis Batch: 146760	Spike	LCS	LCS				Prep Type: Total/NA Prep Batch: 146684 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
4,4'-DDE	16.6	17.4		ug/Kg		105	70 - 120
4,4'-DDD	16.6	17.9		ug/Kg		108	69 - 120
Endosulfan I	16.6	16.7		ug/Kg		101	62 - 120
Endosulfan II	16.6	17.4		ug/Kg		105	65 - 120
alpha-BHC	16.6	15.2		ug/Kg		92	62 - 120
beta-BHC	16.6	17.9		ug/Kg		108	74 - 124
gamma-BHC (Lindane)	16.6	15.9		ug/Kg		96	72 - 120
delta-BHC	16.6	14.2		ug/Kg		86	64 - 120
Endosulfan sulfate	16.6	17.6		ug/Kg		106	67 - 120
Methoxychlor	16.6	19.6		ug/Kg		118	71 - 132
alpha-Chlordane	16.6	17.0		ug/Kg		103	70 - 120
gamma-Chlordane	16.6	17.1		ug/Kg		103	68 - 120

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	103		57 - 122
DCB Decachlorobiphenyl	126		21 - 136

### Lab Sample ID: LCSD 720-146684/3-A Matrix: Solid

### Analysis Batch: 146760 Prep Batch: 146684 Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Limits Limit Unit D %Rec RPD Aldrin 16.6 16.4 99 65 - 120 0 20 ug/Kg Dieldrin 16.6 16.6 100 72 - 120 20 ug/Kg 2 Endrin aldehyde 16.6 16.6 ug/Kg 100 68 - 120 7 20 Endrin 16.6 16.5 ug/Kg 100 68 - 120 3 20 Endrin ketone 16.6 17.2 ug/Kg 104 67 - 120 3 20 16.6 15.8 ug/Kg 95 69 - 120 20 Heptachlor 1 Heptachlor epoxide 16.6 16.6 ug/Kg 100 68 - 120 3 20 4,4'-DDT 16.6 108 20 17.8 ug/Kg 63 - 127 3 4,4'-DDE 102 70 - 120 16.6 16.9 ug/Kg 3 20 4,4'-DDD 16.6 17.3 105 69 - 120 3 20 ug/Kg Endosulfan I 16.6 16.3 ug/Kg 98 62 - 120 3 20 Endosulfan II 16.6 16.8 ug/Kg 101 65 - 120 3 35 alpha-BHC 16.6 15.4 93 62 - 120 20 ug/Kg 1 beta-BHC 16.6 17.9 ug/Kg 108 74 - 124 20 1 96 gamma-BHC (Lindane) 16.6 15.9 ug/Kg 72 - 120 20 0 delta-BHC 16.6 14.1 ug/Kg 85 64 - 120 20 1 Endosulfan sulfate 16.6 17.2 104 67 - 120 2 20 ug/Kg Methoxychlor 16.6 19.2 ug/Kg 116 71 - 132 2 20 alpha-Chlordane 16.6 16.6 ug/Kg 100 70 - 120 3 20 gamma-Chlordane 16.6 16.6 100 68 - 120 3 20 ug/Kg

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	105		57 - 122
DCB Decachlorobiphenyl	120		21 - 136

### Client Sample ID: Lab Control Sample Dup

Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 146760	Sample	Sample	Spike	MS	MS				Prep Batch: 146684 %Rec.
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	ND		16.5	15.5		ug/Kg		94	53 - 120
Dieldrin	5.4		16.5	22.7		ug/Kg		105	46 - 130
Endrin aldehyde	ND		16.5	16.4		ug/Kg		99	40 - 120
Endrin	ND		16.5	17.4		ug/Kg		106	32 - 143
Endrin ketone	ND		16.5	23.0	F	ug/Kg		139	40 - 120
Heptachlor	ND		16.5	15.0		ug/Kg		91	52 - 120
Heptachlor epoxide	ND		16.5	23.2	F	ug/Kg		141	40 - 120
4,4'-DDT	21		16.5	41.0		ug/Kg		119	17 _ 144
4,4'-DDE	15		16.5	33.8		ug/Kg		112	40 _ 120
4,4'-DDD	ND		16.5	22.5	F	ug/Kg		136	40 - 120
Endosulfan I	ND		16.5	16.1		ug/Kg		97	40 - 120
Endosulfan II	ND		16.5	18.6		ug/Kg		112	40 _ 120
alpha-BHC	ND		16.5	13.2		ug/Kg		80	40 - 120
beta-BHC	ND		16.5	16.8		ug/Kg		102	40 - 120
gamma-BHC (Lindane)	ND		16.5	15.6		ug/Kg		95	58 - 120
delta-BHC	ND		16.5	13.6		ug/Kg		82	40 - 120
Endosulfan sulfate	2.9		16.5	16.8		ug/Kg		84	40 - 120
Methoxychlor	ND		16.5	27.0	F	ug/Kg		164	40 - 120
alpha-Chlordane	41	p	16.5	62.0	F	ug/Kg		129	40 - 120
gamma-Chlordane	11	р	16.5	39.8	F	ug/Kg		175	40 - 120
	MS	MS							
Surrogate	%Recoverv	Qualifier	Limits						

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	106		57 - 122
DCB Decachlorobiphenyl	123		21 - 136

### Lab Sample ID: 720-53093-21 MSD Matrix: Solid

Analysis Batch: 146760									Prep E	Batch: 1	<b>466</b> 84
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	ND		16.6	15.9		ug/Kg		95	53 _ 120	2	20
Dieldrin	5.4		16.6	23.2		ug/Kg		107	46 - 130	2	20
Endrin aldehyde	ND		16.6	17.5		ug/Kg		105	40 - 120	7	20
Endrin	ND		16.6	18.3		ug/Kg		110	32 - 143	5	20
Endrin ketone	ND		16.6	26.8	F	ug/Kg		161	40 _ 120	15	20
Heptachlor	ND		16.6	15.0		ug/Kg		90	52 _ 120	0	20
Heptachlor epoxide	ND		16.6	21.4	F	ug/Kg		128	40 - 120	3	20
4,4'-DDT	21		16.6	43.2		ug/Kg		132	17 _ 144	5	20
4,4'-DDE	16		16.6	36.7	F	ug/Kg		123	40 - 120	6	20
4,4'-DDD	ND		16.6	25.1	F	ug/Kg		151	40 _ 120	11	20
Endosulfan I	ND		16.6	16.7		ug/Kg		101	40 _ 120	4	20
Endosulfan II	ND		16.6	20.3	F	ug/Kg		122	40 - 120	9	30
alpha-BHC	ND		16.6	13.9		ug/Kg		84	40 - 120	5	20
beta-BHC	ND		16.6	16.3		ug/Kg		98	40 - 120	3	20
gamma-BHC (Lindane)	ND		16.6	15.4		ug/Kg		92	58 - 120	1	20
delta-BHC	ND		16.6	13.7		ug/Kg		82	40 - 120	1	20
Endosulfan sulfate	2.9		16.6	18.6		ug/Kg		95	40 - 120	11	20
Methoxychlor	ND		16.6	30.9	F	ug/Kg		186	40 - 120	13	20

TestAmerica Pleasanton

Client Sample ID: B-11-1.0

Prep Type: Total/NA

Lab Sample ID: 720-53093-2	1 MSD							C	lient Sampl	le ID: B-	11-1.0
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 146760									Prep B	Batch: 1	46684
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
alpha-Chlordane	41	p	16.6	67.5	F	ug/Kg		162	40 - 120	8	20
gamma-Chlordane	11	p	16.6	44.3	F	ug/Kg		201	40 - 120	11	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	101		57 - 122								
DCB Decachlorobiphenyl	134		21 - 136								

### Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 500-207861 Matrix: Solid Analysis Batch: 207957	/ <b>1-А</b> МВ	МВ					Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dicamba	ND		330		ug/Kg		10/21/13 00:26	10/22/13 05:35	10
Dichlorprop	ND		330		ug/Kg		10/21/13 00:26	10/22/13 05:35	10
2,4-D	ND		330		ug/Kg		10/21/13 00:26	10/22/13 05:35	10
Silvex (2,4,5-TP)	ND		330		ug/Kg		10/21/13 00:26	10/22/13 05:35	10
2,4,5-T	ND		330		ug/Kg		10/21/13 00:26	10/22/13 05:35	10
2,4-DB	ND		330		ug/Kg		10/21/13 00:26	10/22/13 05:35	10
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	63		32 - 122				10/21/13 00:26	10/22/13 05:35	10

### Lab Sample ID: LCS 500-207861/2-A Matrix: Solid

### Analysis Batch: 207957

Analysis Batch: 207957							Prep Ba	tch: 207861
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dicamba	1340	784		ug/Kg		58	44 - 114	
Dichlorprop	1340	562		ug/Kg		42	30 - 113	
2,4-D	1340	ND		ug/Kg		24	23 - 125	
Silvex (2,4,5-TP)	1340	573		ug/Kg		43	36 - 114	
2,4,5-T	1340	566		ug/Kg		42	30 - 119	
2,4-DB	1350	615		ug/Kg		46	34 _ 111	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
DCAA	54		32 - 122

Lab Sample ID: 720-53093-1 MS Matrix: Solid Analysis Batch: 207957								C	Client Sample I Prep Type Prep Batc	
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dicamba	ND		1320	766		ug/Kg		58	44 - 114	
Dichlorprop	ND		1320	528		ug/Kg		40	30 ₋ 113	
2,4-D	ND		1310	ND	F	ug/Kg		20	23 ₋ 125	

### TestAmerica Pleasanton

**Client Sample ID: Lab Control Sample** 

Spike

Added

1320

1320

1330

Limits

32 - 122

Lab Sample ID: 720-53093-1 MS

Analysis Batch: 207957

Matrix: Solid

Silvex (2,4,5-TP)

Analyte

2,4,5-T

2,4-DB

Surrogate DCAA

Method: 8151A - Herbicides (GC) (Continued)

Sample Sample

ND

ND

ND

49

MS MS %Recovery Qualifier

Result Qualifier

%Rec.

Limits

36 - 114

30 - 119

34 - 111

%Rec

44

41

37

10/18/13 21:56

D

# Client Sample ID: B-1-1.0 Prep Type: Total/NA Prep Batch: 207861

ient Sample ID: B-1-1.0
Prep Type: Total/NA
Prep Batch: 207861

7

1

Lab Sample ID: 720-53093-1 Matrix: Solid Analysis Batch: 207957	MSD							(		ole ID: B ype: Tot Batch: 2	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dicamba	ND		1310	675		ug/Kg		52	44 - 114	13	30
Dichlorprop	ND		1310	512		ug/Kg		39	30 - 113	3	30
2,4-D	ND		1300	325		ug/Kg		25	23 - 125	20	30
Silvex (2,4,5-TP)	ND		1310	516		ug/Kg		39	36 _ 114	11	30
2,4,5-T	ND		1310	528		ug/Kg		40	30 _ 119	3	30
2,4-DB	ND		1310	543		ug/Kg		41	34 - 111	10	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
DCAA	48		32 - 122								

MS MS

579

547

489

**Result Qualifier** 

Unit

ug/Kg

ug/Kg

ug/Kg

### Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-146608/1-A Matrix: Solid Analysis Batch: 146715		_				Client Sa	mple ID: Metho Prep Type: T Prep Batch:	otal/NA
Analyte	MB ME Result Qu		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead		0.50		mg/Kg		10/18/13 21:56	10/21/13 17:10	1
Cadmium	ND	0.13		mg/Kg		10/18/13 21:56	10/21/13 17:10	1
Nickel	ND	0.50		mg/Kg		10/18/13 21:56	10/21/13 17:10	1
Chromium	ND	0.50		mg/Kg		10/18/13 21:56	10/21/13 17:10	1
Arsenic	ND	1.0		mg/Kg		10/18/13 21:56	10/21/13 17:10	1
Barium	ND	0.50		mg/Kg		10/18/13 21:56	10/21/13 17:10	1
Silver	ND	0.25		mg/Kg		10/18/13 21:56	10/21/13 17:10	1

ND

### Lab Sample ID: LCS 720-146608/2-A Matrix: Solid

Analysis Batch: 146715

Selenium

Analysis Batch: 146715							Prep Ba	atch: 146608
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	50.0	50.3		mg/Kg		101	80 - 120	
Cadmium	50.0	50.9		mg/Kg		102	80 - 120	
Nickel	50.0	50.1		mg/Kg		100	80 - 120	
Chromium	50.0	48.8		mg/Kg		98	80 - 120	
Arsenic	50.0	47.6		mg/Kg		95	80 - 120	

1.0

mg/Kg

TestAmerica Pleasanton

10/21/13 17:10

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

# 1 2 3 4 5 6 7 8 9 10 11 12 13

Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: LCS 720-146608/2-A Matrix: Solid	Client Sample ID: Lab Control Sampl Prep Type: Total/N/							
Analysis Batch: 146715	Spike	1.05	LCS				Prep Batch: 14 %Rec.	1 <mark>660</mark> 8
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Barium	50.0	50.7		mg/Kg		101	80 - 120	
Silver	25.0	25.9		mg/Kg		104	80 - 120	
Selenium	50.0	47.4		mg/Kg		95	80 - 120	

Lab Sample ID: LCSD 720-146608/3-A Clien							ent Sample ID: Lab Control Sample Dup							
Matrix: Solid							Prep T	ype: To	tal/NA					
Analysis Batch: 146715							Prep I	Batch: 1	46608					
	Spike	LCSD	LCSD				%Rec.		RPD					
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit					
Lead	50.0	50.2		mg/Kg		100	80 - 120	0	20					
Cadmium	50.0	50.8		mg/Kg		102	80 - 120	0	20					
Nickel	50.0	50.2		mg/Kg		100	80 - 120	0	20					
Chromium	50.0	49.9		mg/Kg		100	80 - 120	2	20					
Arsenic	50.0	47.7		mg/Kg		95	80 - 120	0	20					
Barium	50.0	50.9		mg/Kg		102	80 - 120	0	20					
Silver	25.0	26.3		mg/Kg		105	80 - 120	1	20					
Selenium	50.0	47.2		mg/Kg		94	80 - 120	0	20					

### Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 720-146999/1-A											Client Sa	ample ID:	Method	Blank
Matrix: Solid												Prep 1	'ype: To	tal/NA
Analysis Batch: 147062												Prep	Batch: 1	46999
	ME	B MB												
Analyte	Resul	t Qualifier		RL		MDL	Unit		D	Pr	epared	Analy	zed	Dil Fac
Mercury	NE	<u> </u>		0.010			mg/Kg			10/24	4/13 22:09	10/25/13	15:26	1
Lab Sample ID: LCS 720-146999/2-A									CI	ient	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid												Prep 1	ype: To	tal/NA
Analysis Batch: 147062												Prep	Batch: 1	46999
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qual	lifier	Unit		D	%Rec	Limits		
=														
Mercury			0.833		0.828			mg/Kg			99	80 - 120		
Mercury			0.833		0.828					_				
Mercury Lab Sample ID: LCSD 720-146999/3-A			0.833		0.828				ent S	Sam		ab Contro		
Mercury Lab Sample ID: LCSD 720-146999/3-A Matrix: Solid			0.833		0.828				ent S	Sam		ab Contro Prep 1	ype: To	tal/NA
Mercury Lab Sample ID: LCSD 720-146999/3-A									ent S	Sam		ab Contro Prep 1 Prep		tal/NA 46999
Mercury Lab Sample ID: LCSD 720-146999/3-A Matrix: Solid Analysis Batch: 147062			Spike		LCSD			Cli	ent S		ple ID: L	ab Contro Prep 1 Prep %Rec.	ype: To Batch: 1	tal/NA 46999 RPD
Mercury Lab Sample ID: LCSD 720-146999/3-A Matrix: Solid Analysis Batch: 147062 Analyte			Spike Added		LCSD Result			Cli	ent (	Sam	ple ID: L	ab Contro Prep 1 Prep %Rec. Limits	ype: To Batch: 1 	tal/NA 46999 RPD Limit
Mercury Lab Sample ID: LCSD 720-146999/3-A Matrix: Solid Analysis Batch: 147062			Spike		LCSD			Cli	ient (		ple ID: L	ab Contro Prep 1 Prep %Rec.	ype: To Batch: 1	tal/NA 46999 RPD
Mercury Lab Sample ID: LCSD 720-146999/3-A Matrix: Solid Analysis Batch: 147062 Analyte			Spike Added		LCSD Result			Cli	ent (		<b>ple ID: L</b> %Rec 98	ab Contro Prep 1 Prep %Rec. Limits	ype: To Batch: 1 	tal/NA 46999 RPD Limit 20
Mercury Lab Sample ID: LCSD 720-146999/3-A Matrix: Solid Analysis Batch: 147062 Analyte Mercury			Spike Added		LCSD Result			Cli	ent s		<b>ple ID: L</b> %Rec 98	A Contro Prep 7 %Rec. Limits 80 - 120	ype: To Batch: 1 	tal/NA 46999 RPD Limit 20 8-1-1.0
Mercury Lab Sample ID: LCSD 720-146999/3-A Matrix: Solid Analysis Batch: 147062 Analyte Mercury Lab Sample ID: 720-53093-1 MS Matrix: Solid			Spike Added		LCSD Result			Cli	ient (		<b>ple ID: L</b> %Rec 98	Ab Contro Prep 7 %Rec. Limits 80 - 120	ype: To Batch: 1 	tal/NA 46999 RPD Limit 20 8-1-1.0 tal/NA
Mercury Lab Sample ID: LCSD 720-146999/3-A Matrix: Solid Analysis Batch: 147062 Analyte Mercury Lab Sample ID: 720-53093-1 MS Matrix: Solid Analysis Batch: 147062	nple Sar	nple	Spike Added		LCSD Result			Cli	ent (		<b>ple ID: L</b> %Rec 98	Ab Contro Prep 7 %Rec. Limits 80 - 120	ype: To Batch: 1 <u>RPD</u> 1 ple ID: E ype: To	tal/NA 46999 RPD Limit 20 8-1-1.0 tal/NA
Mercury Lab Sample ID: LCSD 720-146999/3-A Matrix: Solid Analysis Batch: 147062 Analyte Mercury Lab Sample ID: 720-53093-1 MS Matrix: Solid Analysis Batch: 147062 Sar	nple Sar sult Qua	•	Spike Added 0.833		LCSD Result 0.818	Qual	lifier	Cli	ent s		<b>ple ID: L</b> %Rec 98	ab Contro Prep 7 %Rec. Limits 80 - 120	ype: To Batch: 1 <u>RPD</u> 1 ple ID: E ype: To	tal/NA 46999 RPD Limit 20 8-1-1.0 tal/NA

### Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 720-53093-1 MS Matrix: Solid Analysis Batch: 147062	D							(		ple ID: B ype: Tot Batch: 1	tal/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.065		0.746	0.851		mg/Kg		105	75 ₋ 125	3	20

TestAmerica Pleasanton

### GC Semi VOA

### Prep Batch: 146662

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-1	B-1-1.0	Total/NA	Solid	3546	
720-53093-1 MS	B-1-1.0	Total/NA	Solid	3546	
720-53093-1 MSD	B-1-1.0	Total/NA	Solid	3546	
720-53093-3	B-2-1.0	Total/NA	Solid	3546	
720-53093-5	B-3-1.0	Total/NA	Solid	3546	
720-53093-7	B-4-1.0	Total/NA	Solid	3546	
720-53093-9	B-5-1.0	Total/NA	Solid	3546	
720-53093-11	B-6-1.0	Total/NA	Solid	3546	
720-53093-13	B-7-1.0	Total/NA	Solid	3546	
720-53093-15	B-8-1.0	Total/NA	Solid	3546	
720-53093-17	B-9-1.0	Total/NA	Solid	3546	
720-53093-19	B-10-1.0	Total/NA	Solid	3546	
LCS 720-146662/2-A	Lab Control Sample	Total/NA	Solid	3546	
LCSD 720-146662/3-A	Lab Control Sample Dup	Total/NA	Solid	3546	
MB 720-146662/1-A	Method Blank	Total/NA	Solid	3546	

### Prep Batch: 146684

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
720-53093-21	B-11-1.0	Total/NA	Solid	3546		
720-53093-21 MS	B-11-1.0	Total/NA	Solid	3546		
720-53093-21 MSD	B-11-1.0	Total/NA	Solid	3546		
720-53093-23	B-12-1.0	Total/NA	Solid	3546		
LCS 720-146684/2-A	Lab Control Sample	Total/NA	Solid	3546		
LCSD 720-146684/3-A	Lab Control Sample Dup	Total/NA	Solid	3546		
MB 720-146684/1-A	Method Blank	Total/NA	Solid	3546		

### Analysis Batch: 146710

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-1	B-1-1.0	Total/NA	Solid	8081A	146662
720-53093-1 MS	B-1-1.0	Total/NA	Solid	8081A	146662
720-53093-1 MSD	B-1-1.0	Total/NA	Solid	8081A	146662
720-53093-3	B-2-1.0	Total/NA	Solid	8081A	146662
720-53093-5	B-3-1.0	Total/NA	Solid	8081A	146662
720-53093-7	B-4-1.0	Total/NA	Solid	8081A	146662
720-53093-9	B-5-1.0	Total/NA	Solid	8081A	146662
720-53093-11	B-6-1.0	Total/NA	Solid	8081A	146662
720-53093-13	B-7-1.0	Total/NA	Solid	8081A	146662
720-53093-13	B-7-1.0	Total/NA	Solid	8081A	146662
720-53093-15	B-8-1.0	Total/NA	Solid	8081A	146662
720-53093-15	B-8-1.0	Total/NA	Solid	8081A	146662
720-53093-17	B-9-1.0	Total/NA	Solid	8081A	146662
720-53093-19	B-10-1.0	Total/NA	Solid	8081A	146662
720-53093-19	B-10-1.0	Total/NA	Solid	8081A	146662
MB 720-146662/1-A	Method Blank	Total/NA	Solid	8081A	146662

### Analysis Batch: 146732

L	ab Sample ID.	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
Ē	.CS 720-146662/2-A	Lab Control Sample	Total/NA	Solid	8081A	146662
L	.CSD 720-146662/3-A	Lab Control Sample Dup	Total/NA	Solid	8081A	146662

10/28/2013

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

**Client Sample ID** 

Lab Control Sample

Method Blank

**Client Sample ID** 

B-12-1.0

Lab Control Sample Dup

B-11-1.0

B-11-1.0

B-11-1.0

GC Semi VOA (Continued)

Analysis Batch: 146760

Lab Sample ID

720-53093-21 MS

720-53093-21 MSD

LCS 720-146684/2-A

MB 720-146684/1-A

Lab Sample ID

720-53093-23

LCSD 720-146684/3-A

Analysis Batch: 146856

720-53093-21

Method

8081A

8081A

8081A

8081A

8081A

8081A

Prep Batch

146684

146684

146684

146684

146684

146684

# 8 9 10 11 12

	Prep Batch	Method
9	146684	8081A

### Prep Batch: 207861

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-1	B-1-1.0	Total/NA	Solid	8151A	
720-53093-1 MS	B-1-1.0	Total/NA	Solid	8151A	
720-53093-1 MSD	B-1-1.0	Total/NA	Solid	8151A	
720-53093-3	B-2-1.0	Total/NA	Solid	8151A	
720-53093-5	B-3-1.0	Total/NA	Solid	8151A	
720-53093-7	B-4-1.0	Total/NA	Solid	8151A	
720-53093-9	B-5-1.0	Total/NA	Solid	8151A	
720-53093-11	B-6-1.0	Total/NA	Solid	8151A	
720-53093-13	B-7-1.0	Total/NA	Solid	8151A	
720-53093-15	B-8-1.0	Total/NA	Solid	8151A	
720-53093-15 - DL	B-8-1.0	Total/NA	Solid	8151A	
720-53093-17	B-9-1.0	Total/NA	Solid	8151A	
720-53093-19	B-10-1.0	Total/NA	Solid	8151A	
720-53093-21	B-11-1.0	Total/NA	Solid	8151A	
720-53093-23	B-12-1.0	Total/NA	Solid	8151A	
LCS 500-207861/2-A	Lab Control Sample	Total/NA	Solid	8151A	
MB 500-207861/1-A	Method Blank	Total/NA	Solid	8151A	

### Analysis Batch: 207957

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-53093-1	B-1-1.0	Total/NA	Solid	8151A	207861
720-53093-1 MS	B-1-1.0	Total/NA	Solid	8151A	207861
720-53093-1 MSD	B-1-1.0	Total/NA	Solid	8151A	207861
720-53093-3	B-2-1.0	Total/NA	Solid	8151A	207861
720-53093-5	B-3-1.0	Total/NA	Solid	8151A	207861
720-53093-7	B-4-1.0	Total/NA	Solid	8151A	207861
720-53093-9	B-5-1.0	Total/NA	Solid	8151A	207861
720-53093-11	B-6-1.0	Total/NA	Solid	8151A	207861
720-53093-13	B-7-1.0	Total/NA	Solid	8151A	207861
720-53093-15	B-8-1.0	Total/NA	Solid	8151A	207861
720-53093-15 - DL	B-8-1.0	Total/NA	Solid	8151A	207861
720-53093-17	B-9-1.0	Total/NA	Solid	8151A	207861
720-53093-19	B-10-1.0	Total/NA	Solid	8151A	207861
720-53093-21	B-11-1.0	Total/NA	Solid	8151A	207861
720-53093-23	B-12-1.0	Total/NA	Solid	8151A	207861
LCS 500-207861/2-A	Lab Control Sample	Total/NA	Solid	8151A	207861
MB 500-207861/1-A	Method Blank	Total/NA	Solid	8151A	207861

TestAmerica Pleasanton

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

### Metals

### Prep Batch: 146608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-1	B-1-1.0	Total/NA	Solid	3050B	
720-53093-3	B-2-1.0	Total/NA	Solid	3050B	
720-53093-5	B-3-1.0	Total/NA	Solid	3050B	
720-53093-7	B-4-1.0	Total/NA	Solid	3050B	
720-53093-9	B-5-1.0	Total/NA	Solid	3050B	
720-53093-11	B-6-1.0	Total/NA	Solid	3050B	
720-53093-13	B-7-1.0	Total/NA	Solid	3050B	
720-53093-15	B-8-1.0	Total/NA	Solid	3050B	
LCS 720-146608/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-146608/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
MB 720-146608/1-A	Method Blank	Total/NA	Solid	3050B	

### Analysis Batch: 146715

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-1	B-1-1.0	Total/NA	Solid	6010B	146608
720-53093-3	B-2-1.0	Total/NA	Solid	6010B	146608
720-53093-5	B-3-1.0	Total/NA	Solid	6010B	146608
720-53093-7	B-4-1.0	Total/NA	Solid	6010B	146608
720-53093-9	B-5-1.0	Total/NA	Solid	6010B	146608
720-53093-11	B-6-1.0	Total/NA	Solid	6010B	146608
720-53093-13	B-7-1.0	Total/NA	Solid	6010B	146608
720-53093-15	B-8-1.0	Total/NA	Solid	6010B	146608
LCS 720-146608/2-A	Lab Control Sample	Total/NA	Solid	6010B	146608
LCSD 720-146608/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	146608
MB 720-146608/1-A	Method Blank	Total/NA	Solid	6010B	146608

### Prep Batch: 146999

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-1	B-1-1.0	Total/NA	Solid	7471A	
720-53093-1 MS	B-1-1.0	Total/NA	Solid	7471A	
720-53093-1 MSD	B-1-1.0	Total/NA	Solid	7471A	
720-53093-3	B-2-1.0	Total/NA	Solid	7471A	
720-53093-5	B-3-1.0	Total/NA	Solid	7471A	
720-53093-7	B-4-1.0	Total/NA	Solid	7471A	
720-53093-9	B-5-1.0	Total/NA	Solid	7471A	
720-53093-11	B-6-1.0	Total/NA	Solid	7471A	
720-53093-13	B-7-1.0	Total/NA	Solid	7471A	
720-53093-15	B-8-1.0	Total/NA	Solid	7471A	
LCS 720-146999/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 720-146999/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
MB 720-146999/1-A	Method Blank	Total/NA	Solid	7471A	

### Analysis Batch: 147062

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-53093-1	B-1-1.0	Total/NA	Solid	7471A	146999
720-53093-1 MS	B-1-1.0	Total/NA	Solid	7471A	146999
720-53093-1 MSD	B-1-1.0	Total/NA	Solid	7471A	146999
720-53093-3	B-2-1.0	Total/NA	Solid	7471A	146999
720-53093-5	B-3-1.0	Total/NA	Solid	7471A	146999
720-53093-7	B-4-1.0	Total/NA	Solid	7471A	146999
720-53093-9	B-5-1.0	Total/NA	Solid	7471A	146999

TestAmerica Pleasanton

### Metals (Continued)

### Analysis Batch: 147062 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-11	B-6-1.0	Total/NA	Solid	7471A	146999
720-53093-13	B-7-1.0	Total/NA	Solid	7471A	146999
720-53093-15	B-8-1.0	Total/NA	Solid	7471A	146999
LCS 720-146999/2-A	Lab Control Sample	Total/NA	Solid	7471A	146999
LCSD 720-146999/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	146999
MB 720-146999/1-A	Method Blank	Total/NA	Solid	7471A	146999

### Lab Sample ID: 720-53093-1 Matrix: Solid

Lab Sample ID: 720-53093-3

Lab Sample ID: 720-53093-5

Lab Sample ID: 720-53093-7

Matrix: Solid

Matrix: Solid

Client Sample ID: B-1-1.0 Date Collected: 10/16/13 09:35 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Fotal/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Fotal/NA	Analysis	8151A		10	207957	10/22/13 06:20	SAW	TAL CHI
Fotal/NA	Prep	3546			146662	10/21/13 11:21	BB	TAL PLS
Fotal/NA	Analysis	8081A		1	146710	10/22/13 02:02	JZT	TAL PLS
Fotal/NA	Prep	3050B			146608	10/18/13 21:56	ASB	TAL PLS
Fotal/NA	Analysis	6010B		4	146715	10/21/13 17:49	SLK	TAL PLS
Fotal/NA	Prep	7471A			146999	10/24/13 22:09	ASB	TAL PLS
Fotal/NA	Analysis	7471A		1	147062	10/25/13 15:38	EFH	TAL PLS

### Client Sample ID: B-2-1.0 Date Collected: 10/16/13 09:50 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 07:28	SAW	TAL CHI
Total/NA	Prep	3546			146662	10/21/13 11:21	BB	TAL PLS
Total/NA	Analysis	8081A		1	146710	10/22/13 02:18	JZT	TAL PLS
Total/NA	Prep	3050B			146608	10/18/13 21:56	ASB	TAL PLS
Total/NA	Analysis	6010B		4	146715	10/21/13 18:01	SLK	TAL PLS
Total/NA	Prep	7471A			146999	10/24/13 22:09	ASB	TAL PLS
Total/NA	Analysis	7471A		1	147062	10/25/13 15:43	EFH	TAL PLS

### Client Sample ID: B-3-1.0 Date Collected: 10/16/13 10:05 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 07:50	SAW	TAL CHI
Total/NA	Prep	3546			146662	10/21/13 11:21	BB	TAL PLS
Total/NA	Analysis	8081A		1	146710	10/22/13 02:35	JZT	TAL PLS
Total/NA	Prep	3050B			146608	10/18/13 21:56	ASB	TAL PLS
Total/NA	Analysis	6010B		4	146715	10/21/13 18:06	SLK	TAL PLS
Total/NA	Prep	7471A			146999	10/24/13 22:09	ASB	TAL PLS
Total/NA	Analysis	7471A		1	147062	10/25/13 15:45	EFH	TAL PLS

### Client Sample ID: B-4-1.0 Date Collected: 10/16/13 10:25 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI

TestAmerica Pleasanton

Matrix: Solid

# Lab Sample ID: 720-53093-7

Lab Sample ID: 720-53093-9

Lab Sample ID: 720-53093-11

Lab Sample ID: 720-53093-13

Matrix: Solid

Matrix: Solid

Matrix: Solid

5

9

Date Collected: 10/16/13 10:25 Date Received: 10/16/13 17:10

Client Sample ID: B-4-1.0

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8151A		10	207957	10/22/13 08:12	SAW	TAL CHI
Total/NA	Prep	3546			146662	10/21/13 11:21	BB	TAL PLS
Total/NA	Analysis	8081A		1	146710	10/22/13 02:52	JZT	TAL PLS
Total/NA	Prep	3050B			146608	10/18/13 21:56	ASB	TAL PLS
Total/NA	Analysis	6010B		4	146715	10/21/13 18:10	SLK	TAL PLS
Total/NA	Prep	7471A			146999	10/24/13 22:09	ASB	TAL PLS
Total/NA	Analysis	7471A		1	147062	10/25/13 15:47	EFH	TAL PLS

### Client Sample ID: B-5-1.0 Date Collected: 10/16/13 10:45 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 08:35	SAW	TAL CHI
Total/NA	Prep	3546			146662	10/21/13 11:21	BB	TAL PLS
Total/NA	Analysis	8081A		1	146710	10/22/13 03:09	JZT	TAL PLS
Total/NA	Prep	3050B			146608	10/18/13 21:56	ASB	TAL PLS
Total/NA	Analysis	6010B		4	146715	10/21/13 18:14	SLK	TAL PLS
Total/NA	Prep	7471A			146999	10/24/13 22:09	ASB	TAL PLS
Total/NA	Analysis	7471A		1	147062	10/25/13 15:54	EFH	TAL PLS

### Client Sample ID: B-6-1.0 Date Collected: 10/16/13 11:25 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 08:58	SAW	TAL CHI
Total/NA	Prep	3546			146662	10/21/13 11:21	BB	TAL PLS
Total/NA	Analysis	8081A		1	146710	10/22/13 03:26	JZT	TAL PLS
Total/NA	Prep	3050B			146608	10/18/13 21:56	ASB	TAL PLS
Total/NA	Analysis	6010B		4	146715	10/21/13 18:18	SLK	TAL PLS
Total/NA	Prep	7471A			146999	10/24/13 22:09	ASB	TAL PLS
Total/NA	Analysis	7471A		1	147062	10/25/13 15:57	EFH	TAL PLS

### Client Sample ID: B-7-1.0 Date Collected: 10/16/13 11:45 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 10:05	SAW	TAL CHI

TestAmerica Pleasanton

Matrix: Solid

# Lab Sample ID: 720-53093-13

Matrix: Solid

### Client Sample ID: B-7-1.0 Date Collected: 10/16/13 11:45 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			146662	10/21/13 11:21	BB	TAL PLS
Total/NA	Analysis	8081A		1	146710	10/22/13 03:43	JZT	TAL PLS
Total/NA	Analysis	8081A		10	146710	10/22/13 08:12	JZT	TAL PLS
Total/NA	Prep	3050B			146608	10/18/13 21:56	ASB	TAL PLS
Total/NA	Analysis	6010B		4	146715	10/21/13 18:23	SLK	TAL PLS
Total/NA	Prep	7471A			146999	10/24/13 22:09	ASB	TAL PLS
Total/NA	Analysis	7471A		1	147062	10/25/13 15:59	EFH	TAL PLS

### Client Sample ID: B-8-1.0 Date Collected: 10/16/13 12:20 Da

### Lab Sample ID: 720-53093-15 Matrix: Solid

Lab Sample ID: 720-53093-17

Lab Sample ID: 720-53093-19

Matrix: Solid

Matrix: Solid

9

5 6

Date Received:	: 10/16/13 17:1	0						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 10:28	SAW	TAL CHI
Total/NA	Prep	8151A	DL		207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A	DL	50	207957	10/22/13 19:17	SAW	TAL CHI
Total/NA	Analysis	8081A		1	146710	10/22/13 03:59	JZT	TAL PLS
Total/NA	Prep	3546			146662	10/21/13 11:21	BB	TAL PLS
Total/NA	Analysis	8081A		10	146710	10/22/13 08:29	JZT	TAL PLS
Total/NA	Prep	3050B			146608	10/18/13 21:56	ASB	TAL PLS
Total/NA	Analysis	6010B		4	146715	10/21/13 18:27	SLK	TAL PLS
Total/NA	Prep	7471A			146999	10/24/13 22:09	ASB	TAL PLS
Total/NA	Analysis	7471A		1	147062	10/25/13 16:01	EFH	TAL PLS

### Client Sample ID: B-9-1.0 Date Collected: 10/16/13 07:20 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 10:51	SAW	TAL CHI
Total/NA	Analysis	8081A		1	146710	10/22/13 04:16	JZT	TAL PLS
Total/NA	Prep	3546			146662	10/21/13 11:21	BB	TAL PLS

### Client Sample ID: B-10-1.0 Date Collected: 10/16/13 07:40 Date Received: 10/16/13 17:10

	Batch	atch Batch		Dilution		Batch Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 11:13	SAW	TAL CHI

TestAmerica Pleasanton

10/28/2013

Batch

Number

146662

146710

146710

Prepared

or Analyzed

10/21/13 11:21

10/22/13 04:33

10/22/13 09:03

Analyst

BB

JZT

JZT

Lab

TAL PLS

TAL PLS

TAL PLS

Batch

Туре

Prep

Analysis

Analysis

Batch

3546

8081A

8081A

Method

Client Sample ID: B-10-1.0

Date Collected: 10/16/13 07:40

Date Received: 10/16/13 17:10

Client Sample ID: B-11-1.0 Date Collected: 10/16/13 08:05

Date Received: 10/16/13 17:10

Prep Type

Total/NA

Total/NA

Total/NA

Lab Sample ID: 720-53093-19

Lab Sample ID: 720-53093-23

# 2 3 4 5 6 7 8

Lab Sample ID: 720-53093-21 Matrix: Solid

Matrix: Solid	9

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 11:36	SAW	TAL CHI
Total/NA	Analysis	8081A		1	146760	10/22/13 20:39	MQL	TAL PLS
Total/NA	Prep	3546			146684	10/21/13 14:16	MRP	TAL PLS

Dilution

Factor

1

10

Run

### Client Sample ID: B-12-1.0 Date Collected: 10/16/13 08:20 Date Received: 10/16/13 17:10

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8151A			207861	10/21/13 00:26	JP1	TAL CHI
Total/NA	Analysis	8151A		10	207957	10/22/13 11:59	SAW	TAL CHI
Total/NA	Prep	3546			146684	10/21/13 14:16	MRP	TAL PLS
Total/NA	Analysis	8081A		5	146856	10/23/13 16:56	JZT	TAL PLS

### Laboratory References:

EMLab-OC = EMLab P&K Costa Mesa, 3585 Cadillac Ave, Suite A, Costa Mesa, CA 92626

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

# 1 2 3 4 5 6 7 8 9 10

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

### Laboratory: TestAmerica Chicago

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alabama	State Program	4	40461	04-30-14
California	NELAP	9	01132CA	04-30-14
Georgia	State Program	4	N/A	04-30-14
Hawaii	State Program	9	N/A	04-30-14
Illinois	NELAP	5	100201	04-30-14
Indiana	State Program	5	C-IL-02	04-30-14
lowa	State Program	7	82	05-01-14
Kansas	NELAP	7	E-10161	10-31-13
Kentucky	State Program	4	90023	12-31-13
Kentucky (UST)	State Program	4	66	04-30-14
Louisiana	NELAP	6	30720	06-30-14
Massachusetts	State Program	1	M-IL035	06-30-14
Mississippi	State Program	4	N/A	04-30-14
North Carolina DENR	State Program	4	291	12-31-13
North Dakota	State Program	8	R-194	04-30-14
Oklahoma	State Program	6	8908	08-31-14
South Carolina	State Program	4	77001	04-30-14
Texas	NELAP	6	T104704252-09-TX	02-28-14
USDA	Federal		P330-12-00038	02-06-15
Wisconsin	State Program	5	999580010	08-31-14
Wyoming	State Program	8	8TMS-Q	04-30-14

### Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

5
8
9
11
13

Method	Method Description	Protocol	Laboratory
3081A	Organochlorine Pesticides (GC)	SW846	TAL PLS
8151A	Herbicides (GC)	SW846	TAL CHI
6010B	Metals (ICP)	SW846	TAL PLS
'471A	Mercury (CVAA)	SW846	TAL PLS
Asbestos PLM	General Sub Contract Method	NONE	EMLab-OC

### Protocol References:

NONE = NONE

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

EMLab-OC = EMLab P&K Costa Mesa, 3585 Cadillac Ave, Suite A, Costa Mesa, CA 92626
TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200
TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TestAmerica Pleasanton

### Sample Summary

TestAmerica Job ID: 720-53093-1

### Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-53093-1	B-1-1.0	Solid	10/16/13 09:35	10/16/13 17:10
720-53093-3	B-2-1.0	Solid	10/16/13 09:50	10/16/13 17:10
720-53093-5	B-3-1.0	Solid	10/16/13 10:05	10/16/13 17:10
720-53093-7	B-4-1.0	Solid	10/16/13 10:25	10/16/13 17:10
720-53093-9	B-5-1.0	Solid	10/16/13 10:45	10/16/13 17:10
720-53093-11	B-6-1.0	Solid	10/16/13 11:25	10/16/13 17:10
720-53093-13	B-7-1.0	Solid	10/16/13 11:45	10/16/13 17:10
720-53093-15	B-8-1.0	Solid	10/16/13 12:20	10/16/13 17:10
720-53093-17	B-9-1.0	Solid	10/16/13 07:20	10/16/13 17:10
720-53093-19	B-10-1.0	Solid	10/16/13 07:40	10/16/13 17:10
720-53093-21	B-11-1.0	Solid	10/16/13 08:05	10/16/13 17:10
720-53093-23	B-12-1.0	Solid	10/16/13 08:20	10/16/13 17:10

TestAmerica Pleasanton



Report for:

**Ms. Dimple Sharma TestAmerica Pleasanton** 1220 Quarry Lane Pleasanton, CA 94566

Regarding: Project: 720-53093-1 EML ID: 1128936

Approved by:

Dates of Analysis: Asbestos-EPA Method 600/R-93/116: 10-21-2013

Miguel Constantio Sua

Approved Signatory Miguel Ines

Service SOPs: Asbestos-EPA Method 600/R-93/116 (EPA-600/M4-82-020 (SOP 01267))

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. The results relate only to the items tested. The results include an inherent uncertainty of measurement associated with estimating percentages by polarized light microscopy. Measurement uncertainty data for sample results with >1% asbestos concentration can be provided when requested.

EMLab P&K ("the Company") shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

4 5 6

13

EMLab P&K

**Client: TestAmerica Pleasanton** C/O: Ms. Dimple Sharma Re: 720-53093-1

17461 Derian Ave, Suite 100, Irvine, CA 92614 (800) 651-4802 Fax (623) 780-7695 www.emlab.com

Date of Sampling: 10-16-2013 Date of Receipt: 10-18-2013 Date of Report: 10-21-2013

### ASBESTOS PLM REPORT: EPA-600/M4-82-020 & EPA METHOD 600/R-93-116

	Total Samples Submitted: 8
	<b>Total Samples Analysed:</b> 8
Tota	l Samples with Layer Asbestos Content > 1%: 0
Location: B-1-1.0 (720-53093-1)	Lab ID-Version‡: 5098812-1
Sample Layers	Asbestos Content
Brown Soil	ND
Composite Non-Asbestos Content	: < 1% Cellulose
Sample Composite Homogeneity	Good
Location: B-2-1.0 (720-53093-3)	Lab ID-Version‡: 5098813-1
Sample Layers	Asbestos Content
Brown Soil	ND
Composite Non-Asbestos Content	: < 1% Cellulose
Sample Composite Homogeneity	Good
Location: B-3-1.0 (720-53093-5)	Lab ID-Version‡: 5098814-1
Sample Layers	Asbestos Content
Brown Soil	ND
Composite Non-Asbestos Content	: < 1% Cellulose
Sample Composite Homogeneity	: Good
Location: B-4-1.0 (720-53093-7)	Lab ID-Version‡: 5098815-
Sample Layers	Asbestos Content
Brown Soil	ND

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

**Composite Non-Asbestos Content:** < 1% Cellulose

Sample Composite Homogeneity: Good

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 $\ddagger$  A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

EMLab ID: 1128936, Page 2 of 3

Lab ID-Version \$\$: 5098816-1

13

17461 Derian Ave, Suite 100, Irvine, CA 92614 (800) 651-4802 Fax (623) 780-7695 www.emlab.com

**Client: TestAmerica Pleasanton** C/O: Ms. Dimple Sharma Re: 720-53093-1

Location: B-5-1.0 (720-53093-9)

Date of Sampling: 10-16-2013 Date of Receipt: 10-18-2013

Date of Report: 10-21-2013

### ASBESTOS PLM REPORT: EPA-600/M4-82-020 & EPA METHOD 600/R-93-116

Sample Layers	
Sample Layers	Asbestos Content
Brown Soil	ND
Composite Non-Asbestos Content:	<1% Cellulose
Sample Composite Homogeneity:	Good
Location: B-6-1.0 (720-53093-11)	Lab ID-Version‡: 5098817-
Sample Layers	Asbestos Content
Brown Soil	ND
Composite Non-Asbestos Content:	< 1% Cellulose
Sample Composite Homogeneity:	Good
Location: B-7-1.0 (720-53093-13)	Lab ID-Version‡: 5098818-
Sample Layers	Asbestos Content
Brown Soil	ND
- · ·	ND
Brown Soil	ND < 1% Cellulose
Brown Soil Composite Non-Asbestos Content: Sample Composite Homogeneity:	ND < 1% Cellulose Good
Brown Soil Composite Non-Asbestos Content: Sample Composite Homogeneity:	ND < 1% Cellulose Good
Brown Soil Composite Non-Asbestos Content: Sample Composite Homogeneity: Location: B-8-1.0 (720-53093-15)	ND < 1% Cellulose Good Lab ID-Version‡: 5098819-
Brown Soil Composite Non-Asbestos Content: Sample Composite Homogeneity: Location: B-8-1.0 (720-53093-15) Sample Layers	ND < 1% Cellulose Good Lab ID-Version‡: 5098819- Asbestos Content ND

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. EMLab P&K reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

Inhomogeneous samples are separated into homogeneous subsamples and analyzed individually. ND means no fibers were detected. When detected, the minimum detection and reporting limit is less than 1% unless point counting is performed. Floor tile samples may contain large amounts of interference material and it is recommended that the sample be analyzed by gravimetric point count analysis to lower the detection limit and to aid in asbestos identification.

 $\ddagger$  A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

EMLab P&K, LLC

Disposal by Lab     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 </th <th>TestAmerica Pleasanton</th> <th></th> <th></th> <th></th> <th>ů S</th> <th>Chain of Custody Record</th> <th>Ō</th> <th>usto</th> <th>ďy</th> <th>Rec</th> <th>örd</th> <th></th> <th></th> <th></th> <th>Tact</th> <th>TactAmarica</th>	TestAmerica Pleasanton				ů S	Chain of Custody Record	Ō	usto	ďy	Rec	örd				Tact	TactAmarica
小学校会社         Regulatory Program:         Unit         Network         Concert         Network	1220 Quarry Lane				Z	n n	V	N	C	ð	M					IN FUNEDONMENTAL TESTING
Client Contact:         Project Manage:	Pleasanton, CA 94566 phone 925.484.1919 fax 925.600.3002	Regulat	ory Prog			] NPDES		CRA	othe l	. V 	1			14939		rica Laboratories, Inc
Wether formulation         TorkFact 415-216-0027         Lub Contact: Dimple Shares         Carrier:         Carrie:         Carrier:         Carrier	Client Contact	Project Mana		Austin		Ű	ite Co	ntact:	Charle	s Rom	0	Date: 10/1	6/13		COC No:	
Biolity         Constrained         Analysis Turnacound Times         Biolity         B	Vista Environemtnal Consulting, Inc	Tel/Fax: 415-2	218-0027				ab Co	ntact:	Jimple	Sharr	na	Carrier:		*****		2
Consistent         Consist	2984 Teagarden Street	Ana	ilysis Tur	naround 7	ime		L	ļ		180					Sampler:	
Expension         Fine         Transmission         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N	San Leandr, CA 94577		DAYS	C WOR	KING DAY	0				)8) (8(					For Lab Us	e Only:
Difference         2 enerse         1 vicks		TAT	f different fro	m Below: Sta	andard		( N			səp					Walk-in Clie	nt:
Didlet Hame Boston/Hame Boston/			2 WE	eks						isəi					Lab Sampli	Jd:
Sign: Hayward, CA	Project Name: Boston/Hampton Road Sites		1 We	ъ.						129						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Site: Hayward, CA		2 da	/5		<u>/ -  </u>	JSW	(18	(19)	d ər					Job / SDG 1	40.:
Sample familieation         Sample familie and familieation         Sample famili	#Od		1 da				/ \$		.8) :	tirol						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Sample Type (c≖comp,	······································		M miohe	·····	erbicide	น่วงทธยา	٥٢٥					
B-1-1.0 $10/16/2013$ $\sigma_{f}\gamma_{f}\sigma$ S       2       N         B-1-2.0 $10/16/2013$ $\sigma_{f}\gamma_{f}\sigma$ G       S       2       N         B-2-1.0 $10/16/2013$ $\sigma_{f}\gamma_{f}\sigma$ G       S       2       N         B-2-2.0 $10/16/2013$ $\sigma_{f}\gamma_{f}\sigma$ G       S       2       N         B-2-2.0 $10/16/2013$ $\sigma_{f}\gamma_{f}\sigma$ G       S       2       N         B-3-2.0 $10/16/2013$ $\ell_{f}\sigma_{f}\sigma$ G       S       2       N         B-3-1.0 $10/16/2013$ $\ell_{f}\sigma_{f}\sigma$ G       S       2       N         B-3-2.0 $10/16/2013$ $\ell_{f}\sigma_{f}\sigma$ G       S       2       N         B-4-1.0 $10/16/2013$ $\ell_{f}\sigma_{f}\sigma$ G       S       2       N         B-4-1.0 $10/16/2013$ $\ell_{f}\sigma_{f}\sigma$ G       S       2       N         B-5-1.0       B-5-1.0 $10/16/2013$ $\ell_{f}\sigma_{f}\sigma$ G       S       N         B-6-1.0       B-6-1.0 $10/16/2013$ $\ell_{f}\sigma_{f}\sigma$ S       N         Preservation Usedi: f=ice, 2=HOI	Sample Identification	Date	-	G≖Grab)	Matrix	ī	ъd		ЭН	10	ж				Sam	ple Specific Notes:
B-1-2.0       10/16/2013 $97y_{0}$ S       2       N         B-2-1.0       10/16/2013 $295S$ S       S       2       N         B-2-2.0       10/16/2013 $295S$ G       S       2       N         B-3-1.0       10/16/2013 $295S$ G       S       2       N         B-3-1.0       10/16/2013 $10/65$ G       S       2       N         B-3-1.0       10/16/2013 $10/65$ G       S       2       N         B-3-1.0       10/16/2013 $10/65$ G       S       2       N         B-3-1.0       10/16/2013 $10/55$ G       S       2       N         B-4-1.0       10/16/2013 $10/55$ G       S       2       N         B-5-1.0       B-5-1.0       10/16/2013 $10^{2}5^{2}5$ G       S       2       N         B-5-2.0       B-5-1.0       10/16/2013 $10^{2}5^{2}5$ G       S       2       N         B-5-2.0       B-5-2.0       10/16/2013 $10^{2}5^{2}5$ G       S       2       N         B-6-1.0       B-6-1.0 <td>B-1-1.0</td> <td></td> <td></td> <td></td> <td>s</td> <td></td> <td>Z</td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	B-1-1.0				s		Z			×						
B-2-1.0       10/16/2013 $\Box g S = 2$ N         B-2-2.0       10/16/2013 $\Box S = 2$ N         B-3-1.0       10/16/2013 $\Box g S = 2$ N         B-4-1.0       10/16/2013 $\Box S = 2$ N         B-4-1.0       10/16/2013 $\Box S = 2$ N         B-4-2.0       10/16/2013 $\angle S = 2$ N         B-5-1.0       10/16/2013 $\angle S = 2$ N         B-5-2.0       10/16/2013 $\angle S = 2$ N         B-6-1.0       10/16/2013 $\angle S = 2$ N         B-6-1.0       10/16/2013 $\angle S = 2$ N         B-6-2.0       1	B-1-2.0			(1)	s						×					
B-2-2.0       10/16/2013 $\delta S S$ 2       N         B-3-1.0       10/16/2013 $\delta W S$ G       S       2       N         B-3-2.0       10/16/2013 $\delta W S$ G       S       2       N         B-3-1.0       10/16/2013 $\delta W S$ G       S       2       N         B-4-1.0       10/16/2013 $\delta S S$ G       S       2       N         B-4-1.0       10/16/2013 $\delta S S$ G       S       2       N         B-5-1.0       10/16/2013 $\delta S S$ G       S       2       N         Possible Hazerd Identification:       B-5-2.0       10/16/2013 $\ell S S$ G       S       2       N         Possible Hazerd Identification:       B-6-1.0       10/16/2013 $\ell S S$ G       S       2       N         Possible Hazerd Identification:       B-6-1.0       10/16/2013 $\ell S S$ G       S       2       N         Possible Hazerd Identification:       B-6-1.0       10/16/2013 $\ell S S$ G       S       2       N         Possible Hazerd Identification:       B-6-1.0       10/16/2013 $\ell S S$	B-2-1.0	10/16/2013			s		Z		X	×						
B-3-1.0       10/16/2013 $\ell \ell r \leq 5$ S       2       N         B-3-2.0       10/16/2013 $\ell \ell r \leq 5$ S       2       N         B-4-1.0       10/16/2013 $\ell \ell r \leq 5$ S       2       N         B-4-1.0       10/16/2013 $\ell \ell \leq 5$ S       2       N         B-4-2.0       10/16/2013 $\ell \ell \geq 5$ G       S       2       N         B-5-1.0       10/16/2013 $\ell \ell \geq 5$ G       S       2       N         B-5-2.0       10/16/2013 $\ell \ell \geq 5$ G       S       2       N         B-5-2.0       10/16/2013 $\ell \ell \geq 5$ G       S       2       N         Possible Hazard       B-5-2.0       10/16/2013 $\ell \ell \geq 5$ G       S       2       N         Possible Hazard Identification:       B-6-1.0       10/16/2013 $\ell \ell \leq 5$ S       N       N         Possible Hazard Identification:       B-6-2.0       10/16/2013 $\ell \ell \leq 5$ S       N       N         Possible Hazard Identification:       B-6-2.0       10/16/2013 $\ell \ell \leq 5$ S       N       N         Possible Hazard Identif		10/16/2013		(1)	s						×					
B-3-2.0       10/16/2013 $10/16/2013$ $10/16$ S       2       N         B-4-1.0       10/16/2013 $10/16/2013$ $10/2$ G       S       2       N         B-5-1.0       10/16/2013 $16/3$ G       S       2       N         B-5-1.0       10/16/2013 $16/3$ G       S       2       N         B-5-1.0       10/16/2013 $10/16/2013$ $10/3$ G       S       2       N         B-5-2.0       10/16/2013 $10/16/2013$ $10/3$ G       S       2       N         Preservation Used:       B-6-1.0       10/16/2013 $10/3$ G       S       2       N         Preservation Used:       1= loe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NAOH; 6       S       S       N       N         Preservation Used:       1= loe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NAOH; 6       S       S       N       N         Preservation Used:       1= loe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NAOH; 6       S       S       N       N         Preservation Used:       1= loe, 2= HCl; 3= H2SO4; 4=HNO3; 5=NAOH; 6       S       S       N       N         Pre amy samples from a listed EPA Hazardous Waste?					s		z			×						
B-4-1.0       10/16/2013       / Ø < S       2       N         B-4-2.0       10/16/2013       / § < S					s						×					
B-4-2.0       B-4-2.0       10/16/2013       / 6 3       2       N         B-5-1.0       10/16/2013       / 3 7 G       S       2       N         B-5-2.0       10/16/2013       / 3 7 G       S       2       N         B-6-1.0       10/16/2013       / 3 7 G       S       2       N         Possible Hazard lentification:       B-6-2.0       10/16/2013       / 1 5 6       S       2       N         Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other       1 5 6       S       2       N         Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.       2       N         Comments Section if the lab is to dispose of the sample.       2       N       2       N         Special Instructions/CC Requirements & Comments:       5       5       3       0       1		10/16/2013			s		Ż			×						
10/16/2013     / ∂ Y G     S     2     N       10/16/2013     / / 3 Y     G     S     2     N       10/16/2013     / / 3 Y     G     S     2     N       10/16/2013     / / 3 K     G     S     2     N       10/16/2013     / / 3 K     G     S     2     N       VO3; 5=NaOH; 6= Other     D     S     2     N       Please List any EPA Waste Codes for the sample in the     Inhonom     Inhonom				-15	s						×					
10/16/2013     ✓ダン     G     S     2     N       10/16/2013     //ぎょ     G     S     2     N       10/16/2013     //ぎょ     G     S     2     N       VO3: 5=NaOH; 6= Other     Other	B~5-1.0			6	s		Z			×						
10/16/2013     バマン     G     S     2     N       10/16/2013     バチット     G     S     2     N       VO3: 5=NaOH; 6= Other     バチット     G     S     2     N       Please List any EPA Waste Codes for the sample in the     M     M     M       Int     Detson B     Únknown     M	B-5-2.0			(	s						×	720-53	093 Chai	n of Custod	y	
10/16/2013     1/5 & G     S     2 N       VO3: 5=NaOH; 6= Other     Other     S     2 N       Please List any EPA Waste Codes for the sample in the inthe	B-6-1.0			1	s		Z			×				-		
VO3; 5=NaOH; 6= Other Please List any EPA Waste Codes for the sample in the Int Deison B Junknown	B-6-2.0			-	s						×					
Please List any EPA Waste Codes for the sample in the intPoison BJuknown	Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	; 5=NaOH; 6= Othe	H							ALL REPORT						
IntPoison BUnknownReturn to ClientDisposal by LabArchive for		ase List any EPA Wa	aste Code	s for the s	ample in	the	San	iple Di	sposa	(Afe	e may be	assessed	if sampl	es are retai	ned longer tha	n 1 month)
	Non-Hazard Hammable Skin Intiant	Doison B		J Unkino	UMC		ری ۳	] Return	to Clien	÷	2	isposal by Lat		Archive fo		ths
	Special Instructions/QC Requirements & Comments:						4									

# 4 5 6 7 13 14 15

Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013

1

650

~

2.6° ,4,7°C

Therm ID No.:

Corr'd:

Cooler Temp. (°C): Obs'd:

Received by:  $\emptyset$ 

Date/Time: 10/10/13 Date/Time:

iv arn en Pal

Company Company: Company:

Company:

Relinquished by: Relinguished by

10/28/2013

Custody Seal No.:

2

Yes 

Custody Seals Intact:

Relinguished by:

Company:

Date/Time:

700

Ŵ,

<u>10////</u> Date/Time; 0//// Date/Time:

Company

X Company:

Received in Laboratory by:

<u>ро/16/13_12/0</u> Date/Time: F

Received by

TestAmerica Pleasanton		Chain of C	Chain of Custody Record	rd	Tottomico
1220 Quarry Lane	-		\$ \$ 1 \$ \$		
Pleasanton, CA 94566 nhone 975,484 1919 fax 975,600 3002				n	١
	ram:		L RCRA 🗸 Other:	- 149,93	ł
	Project Manager: Jeff Austin	Site Co	Site Contact: Charles Rome	Date: 10/16/13	COC No:
Vista Environemtnai Consulting, Inc	Tel/Fax: 415-218-0027		Lab Contact: Dimple Sharma	Carrier:	2_ of 2_ COCs
2984 leagarden Street	Analysis Turnaround Time	ime	180		Sampler:
A 94577		WORKING DAYS	18) :		For Lab Use Only:
	TAT if different from Below: Standard		səp		Walk-in Client
888-296-0271 FAX	2 weeks	/ <u>/</u> ( <u>N</u>	isoli		Lab Sampling:
Project Name: Boston/Hampton Road Sites	1 week				
Site: Hayward, CA		ISM	(13		Job / SDG No.:
P 0 #	1 da	1/5	((		
Samole Identification	Sample Sample (C=Comp. Date Time C=C=Comp.	z z z z z z z z z z z z z z z z z z z	sobestos ( ead (601( erbicides rganochi		
B-7-1.0	13 11 SHI	2 N N			Califor Opening 14063.
B7.20	10/16/2013 1152				
B-8-1.0	3661		× × ×		
			<		
	10/16/2013 1 6.50 6	N N N			
B-9-1.0	10/16/2013 0720 G	S 2 N N	××		
CC B-9-2.0	10/16/2013 0735 G	S 2 N N		×	
B-10-1.0	10/16/2013 674 0 G	S 2 N N	×		
B-10-2.0	10/16/2013 0755 G	s 2 N N	×		
B-11-1.0	10/16/2013 0805 G	S 2 N N	X X		
B-11-2.0	10/16/2013 @810 G	S 2 N N	×		
B-12-1.0	10/16/2013 0520 G	S 2 N N	××		
B-12-2.0	525	S N N	×		
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	=NaOH; 6= Other				
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the s	for the sample in the	Sample Disposal ( A fee may be	ay be assessed if samples are retained longer than 1 month)	d longer than 1 month)
🗌 Non-Hazard 🛛 🗌 Flammable 🔄 Skin Irritant	Poison B		Return to Client	Disposal by Lab     Disposal by Lab	Months
Special Instructions/QC Requirements & Comments:			- - 		
Custody Seals Intact. Cves C No	Custody Seal No.:		Cooler Temp. (°C): Obs'd	): Obs'd:Corr'd:	Therm ID No.:
Row	Company: 1/12 Dr. Fruiter miter Par	Date/Time: Rece	Received by:	Company:	Date/Time:
Afterlinguished by:		Date/Time: Recei	ived by	Company	~ ×
Chelinquished by:		Date/Time: Reco	Received in Laboratory by:	Company:	DeterTime:
	*	1	1	Form No. CP	Form No. CA-C-WI-002, Rev. 4.2, dated 04/02/2013
	- · · ·	5	1 2 3 4	5 7 9 0	1 2 3 4

ar yes

194.s

Client: Vista Environmental Consulting, Inc

### Login Number: 53093 List Number: 1

Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-53093-1

List Source: TestAmerica Pleasanton

Client: Vista Environmental Consulting, Inc

### Login Number: 53093 List Number: 1 Creator: Kelsey, Shawn M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

Job Number: 720-53093-1

List Source: TestAmerica Chicago

List Creation: 10/18/13 11:16 AM



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

### TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

### TestAmerica Job ID: 720-53093-2

Client Project/Site: Boston/Hampton Road Sites

### For:

Vista Environmental Consulting, Inc 2984 Teagarden Street San Leandro, California 94577

Attn: Jeff Austin

Ashaema

Authorized for release by: 11/4/2013 2:33:23 PM

Dimple Sharma, Project Manager I (925)484-1919 dimple.sharma@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	10
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

### **Definitions/Glossary**

### Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

### Glossary

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	Δ
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	8
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	9
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	13
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

### Laboratory: TestAmerica Pleasanton

Narrative

Job Narrative 720-53093-2

### Comments

No additional comments.

### Receipt

The samples were received on 10/16/2013 5:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.6° C and 4.7° C.

### Metals

No analytical or quality issues were noted.

### **Detection Summary**

### Lab Sample ID: 720-53093-17

Lab Sample ID: 720-53093-19

4 5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Arsenic	17		3.9		mg/Kg	4	6010B	Total/NA
Barium	180		1.9		mg/Kg	4	6010B	Total/NA
Chromium	46		1.9		mg/Kg	4	6010B	Total/NA
Lead	71		1.9		mg/Kg	4	6010B	Total/NA
Mercury	0.063		0.0091		mg/Kg	1	7471A	Total/NA

### Client Sample ID: B-10-1.0

Client Sample ID: B-9-1.0

Analyte Re:	ult Qualifier	RL MDI	_ Unit	Dil Fac	D Method	Prep Type
Arsenic	47	3.9	mg/Kg	4	6010B	Total/NA
Barium	310	1.9	mg/Kg	4	6010B	Total/NA
Cadmium	1.9	0.49	mg/Kg	4	6010B	Total/NA
Chromium	46	1.9	mg/Kg	4	6010B	Total/NA
Lead	40	1.9	mg/Kg	4	6010B	Total/NA
Mercury C	.11	0.0090	mg/Kg	1	7471A	Total/NA

### Client Sample ID: B-11-1.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Arsenic	8.3		3.7		mg/Kg	4	6010B	Total/NA
Barium	170		1.8		mg/Kg	4	6010B	Total/NA
Chromium	38		1.8		mg/Kg	4	6010B	Total/NA
Lead	130		1.8		mg/Kg	4	6010B	Total/NA
Mercury	0.18		0.0094		mg/Kg	1	7471A	Total/NA

### Client Sample ID: B-12-1.0

### Lab Sample ID: 720-53093-23

Lab Sample ID: 720-53093-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	7.8		3.8		mg/Kg	4	_	6010B	Total/NA
Barium	930		1.9		mg/Kg	4		6010B	Total/NA
Cadmium	0.91		0.48		mg/Kg	4		6010B	Total/NA
Chromium	200		1.9		mg/Kg	4		6010B	Total/NA
Lead	630		1.9		mg/Kg	4		6010B	Total/NA
Mercury	0.13		0.0097		mg/Kg	1		7471A	Total/NA

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

### Client Sample ID: B-9-1.0 Date Collected: 10/16/13 07:20

### Lab Sample ID: 720-53093-17 Matrix: Solid

Method: 6010B - Metals (ICP)									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	17		3.9		mg/Kg		10/31/13 17:42	11/01/13 12:35	4
Barium	180		1.9		mg/Kg		10/31/13 17:42	11/01/13 12:35	4
Cadmium	ND		0.49		mg/Kg		10/31/13 17:42	11/01/13 12:35	4
Chromium	46		1.9		mg/Kg		10/31/13 17:42	11/01/13 12:35	۲
Lead	71		1.9		mg/Kg		10/31/13 17:42	11/01/13 12:35	4
Selenium	ND		3.9		mg/Kg		10/31/13 17:42	11/01/13 12:35	2
Silver	ND		0.97		mg/Kg		10/31/13 17:42	11/01/13 12:35	4
Method: 7471A - Mercury (CVAA)									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.063		0.0091		mg/Kg		10/31/13 20:51	11/01/13 17:25	1

**TestAmerica** Pleasanton

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

### Client Sample ID: B-10-1.0 Date Collected: 10/16/13 07:40

# Lab Sample ID: 720-53093-19

Matrix: Solid

5 6 7

Method: 6010B - Metals (ICP)									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	47		3.9		mg/Kg		10/31/13 17:42	11/01/13 12:39	4
Barium	310		1.9		mg/Kg		10/31/13 17:42	11/01/13 12:39	4
Cadmium	1.9		0.49		mg/Kg		10/31/13 17:42	11/01/13 12:39	4
Chromium	46		1.9		mg/Kg		10/31/13 17:42	11/01/13 12:39	4
Lead	440		1.9		mg/Kg		10/31/13 17:42	11/01/13 12:39	4
Selenium	ND		3.9		mg/Kg		10/31/13 17:42	11/01/13 12:39	4
Silver	ND		0.97		mg/Kg		10/31/13 17:42	11/01/13 12:39	4
Method: 7471A - Mercury (CVAA)									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.11		0.0090		mg/Kg		10/31/13 20:51	11/01/13 17:28	1
# Client Sample ID: B-11-1.0 Date Collected: 10/16/13 08:05

Date	<b>Received:</b>	10/16/13	17:10

# Lab Sample ID: 720-53093-21 Matrix: Solid

Method: 6010B - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	8.3		3.7		mg/Kg		10/31/13 17:42	11/01/13 12:44	
Barium	170		1.8		mg/Kg		10/31/13 17:42	11/01/13 12:44	4
Cadmium	ND		0.46		mg/Kg		10/31/13 17:42	11/01/13 12:44	4
Chromium	38		1.8		mg/Kg		10/31/13 17:42	11/01/13 12:44	4
Lead	130		1.8		mg/Kg		10/31/13 17:42	11/01/13 12:44	2
Selenium	ND		3.7		mg/Kg		10/31/13 17:42	11/01/13 12:44	4
Silver	ND		0.92		mg/Kg		10/31/13 17:42	11/01/13 12:44	4
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.18		0.0094		mg/Kg		10/31/13 20:51	11/01/13 17:30	

# Client Sample ID: B-12-1.0 Date Collected: 10/16/13 08:20

-					_
Date	Received:	10/16/	13	17:1	U

# Lab Sample ID: 720-53093-23

Matrix: Solid

5 6 7

Method: 6010B - Metals (ICP)						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	7.8		3.8		mg/Kg		10/31/13 17:42	11/01/13 12:48	4
Barium	930		1.9		mg/Kg		10/31/13 17:42	11/01/13 12:48	4
Cadmium	0.91		0.48		mg/Kg		10/31/13 17:42	11/01/13 12:48	4
Chromium	200		1.9		mg/Kg		10/31/13 17:42	11/01/13 12:48	4
Lead	630		1.9		mg/Kg		10/31/13 17:42	11/01/13 12:48	4
Selenium	ND		3.8		mg/Kg		10/31/13 17:42	11/01/13 12:48	4
Silver	ND		0.95		mg/Kg		10/31/13 17:42	11/01/13 12:48	4
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.13		0.0097		mg/Kg		10/31/13 20:51	11/01/13 17:32	1

# Method: 6010B - Metals (ICP)

# Lab Sample ID: MB 720-147501/1-A Matrix: Solid

# Analysis Batch: 147565

								i top Batom	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		1.0		mg/Kg		10/31/13 17:42	11/01/13 10:41	1
Barium	ND		0.50		mg/Kg		10/31/13 17:42	11/01/13 10:41	1
Cadmium	ND		0.13		mg/Kg		10/31/13 17:42	11/01/13 10:41	1
Chromium	ND		0.50		mg/Kg		10/31/13 17:42	11/01/13 10:41	1
Lead	ND		0.50		mg/Kg		10/31/13 17:42	11/01/13 10:41	1
Selenium	ND		1.0		mg/Kg		10/31/13 17:42	11/01/13 10:41	1
Silver	ND		0.25		mg/Kg		10/31/13 17:42	11/01/13 10:41	1

# Lab Sample ID: LCS 720-147501/2-A Matrix: Solid

Analysis Batch: 147565

Analysis Batch: 147565							Prep	Batch: 147501
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	50.0	44.0		mg/Kg		88	80 - 120	
Barium	50.0	45.7		mg/Kg		91	80 - 120	
Cadmium	50.0	47.5		mg/Kg		95	80 - 120	
Chromium	50.0	46.8		mg/Kg		94	80 - 120	
Lead	50.0	46.2		mg/Kg		92	80 - 120	
Selenium	50.0	42.7		mg/Kg		85	80 - 120	
Silver	25.0	24.7		mg/Kg		99	80 - 120	

# Lab Sample ID: LCSD 720-147501/3-A Matrix: Solid

# alveis Batch: 147565

Analysis Batch: 147565								Batch: 1	47501
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	50.0	45.2		mg/Kg		90	80 - 120	3	20
Barium	50.0	47.4		mg/Kg		95	80 - 120	4	20
Cadmium	50.0	48.3		mg/Kg		97	80 - 120	2	20
Chromium	50.0	48.3		mg/Kg		97	80 - 120	3	20
Lead	50.0	47.3		mg/Kg		95	80 - 120	2	20
Selenium	50.0	44.0		mg/Kg		88	80 - 120	3	20
Silver	25.0	25.0		mg/Kg		100	80 - 120	1	20

# Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 720-147521/1-A Matrix: Solid Analysis Batch: 147585	МВ	МВ									Client Sa	mple ID: Metho Prep Type: Prep Batch	Total/NA
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fac
Mercury	ND			0.010			mg/Kg			10/31	/13 20:51	11/01/13 16:02	1
Lab Sample ID: LCS 720-147521/2-A									CI	ient	Sample	ID: Lab Contro	Sample
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 147585												Prep Batch	: 147521
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	
Mercury			0.833		0.942			mg/Kg			113	80 - 120	

**TestAmerica** Pleasanton

**Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 147501 5 6 7

# **Client Sample ID: Lab Control Sample**

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA - Dotoby 147504

Prep Type: Total/NA

# Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: LCSD 720-147521/3-A Matrix: Solid				Cli	ent Sarr	ple ID:	Lab Contro Prep 1	ol Sampl Type: Tot	
Analysis Batch: 147585							Prep	Batch: 1	47521
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.833	0.900		mg/Kg		108	80 - 120	5	20

# Metals

# Prep Batch: 147501

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-17	B-9-1.0	Total/NA	Solid	3050B	
720-53093-19	B-10-1.0	Total/NA	Solid	3050B	
720-53093-21	B-11-1.0	Total/NA	Solid	3050B	
720-53093-23	B-12-1.0	Total/NA	Solid	3050B	
LCS 720-147501/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-147501/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
MB 720-147501/1-A	Method Blank	Total/NA	Solid	3050B	

# Prep Batch: 147521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-17	B-9-1.0	Total/NA	Solid	7471A	
720-53093-19	B-10-1.0	Total/NA	Solid	7471A	
720-53093-21	B-11-1.0	Total/NA	Solid	7471A	
720-53093-23	B-12-1.0	Total/NA	Solid	7471A	
LCS 720-147521/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 720-147521/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
MB 720-147521/1-A	Method Blank	Total/NA	Solid	7471A	

# Analysis Batch: 147565

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-53093-17	B-9-1.0	Total/NA	Solid	6010B	147501
720-53093-19	B-10-1.0	Total/NA	Solid	6010B	147501
720-53093-21	B-11-1.0	Total/NA	Solid	6010B	147501
720-53093-23	B-12-1.0	Total/NA	Solid	6010B	147501
LCS 720-147501/2-A	Lab Control Sample	Total/NA	Solid	6010B	147501
LCSD 720-147501/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	147501
MB 720-147501/1-A	Method Blank	Total/NA	Solid	6010B	147501

# Analysis Batch: 147585

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 720-147521/2-A	Lab Control Sample	Total/NA	Solid	7471A	147521
LCSD 720-147521/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	147521
MB 720-147521/1-A	Method Blank	Total/NA	Solid	7471A	147521

# Analysis Batch: 147598

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-53093-17	B-9-1.0	Total/NA	Solid	7471A	147521
720-53093-19	B-10-1.0	Total/NA	Solid	7471A	147521
720-53093-21	B-11-1.0	Total/NA	Solid	7471A	147521
720-53093-23	B-12-1.0	Total/NA	Solid	7471A	147521

9

	le ID: B-9-1.						Lä		): 720-53093-1
	: 10/16/13 07:2 : 10/16/13 17:1								Matrix: Soli
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			147501	10/31/13 17:42	CTD	TAL PLS	
Total/NA	Analysis	6010B		4	147565	11/01/13 12:35	EFH	TAL PLS	
Total/NA	Prep	7471A			147521	10/31/13 20:51	JCR	TAL PLS	
Total/NA	Analysis	7471A		1	147598	11/01/13 17:25	SLK	TAL PLS	
lient Samp	le ID: B-10-1	1.0					La	ab Sample II	): 720-53093-1
	: 10/16/13 07:4 : 10/16/13 17:1							-	Matrix: Soli
ate Received	. 10/16/13 17:1	U							
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			147501	10/31/13 17:42	CTD	TAL PLS	
Total/NA	Analysis	6010B		4	147565	11/01/13 12:39	EFH	TAL PLS	
Total/NA	Prep	7471A			147521	10/31/13 20:51	JCR	TAL PLS	
	Analysis	7471A		1	147598	11/01/13 17:28	SLK	TAL PLS	
Total/NA									
	le ID: B-11-1	1.0					La	ab Sample II	): 720-53093-2
lient Samp	: 10/16/13 08:0	)5					La	ab Sample II	): 720-53093-2 Matrix: Soli
ate Collected		)5		Dilution	Batch	Prepared	La	ab Sample II	
Client Samp Date Collected Date Received	: 10/16/13 08:0 : 10/16/13 17:1 Batch	)5  0 Batch	Run			Prepared or Analyzed		ab Sample II	
Client Samp	: 10/16/13 08:0 : 10/16/13 17:1	05 10	Run	Dilution Factor	Batch Number 147501	Prepared or Analyzed 10/31/13 17:42	Analyst CTD		

# Client Sample ID: B-12-1.0 Date Collected: 10/16/13 08:20 Date Received: 10/16/13 17:10

Prep

Analysis

7471A

7471A

Total/NA

Total/NA

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			147501	10/31/13 17:42	CTD	TAL PLS
Total/NA	Analysis	6010B		4	147565	11/01/13 12:48	EFH	TAL PLS
Total/NA	Prep	7471A			147521	10/31/13 20:51	JCR	TAL PLS
Total/NA	Analysis	7471A		1	147598	11/01/13 17:32	SLK	TAL PLS

## Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

TAL PLS

TAL PLS

Lab Sample ID: 720-53093-23

Matrix: Solid

10/31/13 20:51 JCR

11/01/13 17:30 SLK

147521

147598

1

# Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

5	5
8	
9	
1	1
	3

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL PLS
7471A	Mercury (CVAA)	SW846	TAL PLS

# Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# Laboratory References:

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

# Sample Summary

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

TestAmerica Job ID: 720-53093-2

720-53093-19       B-10-1.0       Solid       10/16/13 07:40       10/16/13 17:         720-53093-21       B-11-1.0       Solid       10/16/13 08:05       10/16/13 17:	imental Consulting, Inc		TestAmerica Job ID: 720-53093-2				
720-53093-17         B-9-1.0         Solid         10/16/13 07:20         10/16/13 17:           720-53093-19         B-10-1.0         Solid         10/16/13 07:40         10/16/13 17:           720-53093-21         B-11-1.0         Solid         10/16/13 07:40         10/16/13 17:	/Hampton Road Sites						
720-53093-17         B-9-1.0         Solid         10/16/13 07:20         10/16/13 17:           720-53093-19         B-10-1.0         Solid         10/16/13 07:40         10/16/13 17:           720-53093-21         B-11-1.0         Solid         10/16/13 07:40         10/16/13 17:	Client Sample ID	Matrix	Collected	Received			
720-53093-21 B-11-1.0 Solid 10/16/13 08:05 10/16/13 17:				10/16/13 17:10			
	B-10-1.0	Solid	10/16/13 07:40	10/16/13 17:10			
720-53093-23 B-12-1.0 Solid 10/16/13 08:20 10/16/13 17:	B-11-1.0	Solid	10/16/13 08:05	10/16/13 17:10			
	B-12-1.0	Solid	10/16/13 08:20	10/16/13 17:10			
		/Hampton Road Sites Client Sample ID B-9-1.0 B-10-1.0 B-11-1.0	/Hampton Road Sites Client Sample ID B-9-1.0 B-10-1.0 B-10-1.0 B-11-1.0 Solid Solid Solid	Client Sample ID         Matrix         Collected           B-9-1.0         Solid         10/16/13 07:20           B-10-1.0         Solid         10/16/13 07:40           B-11-1.0         Solid         10/16/13 08:05			

# Sharma, Dimple



From: Charlie Rome [charlie@albionpartners.com]

Sent: Thursday, October 31, 2013 2:12 PM

To: Sharma, Dimple

Cc: 'Jeff Austin'

Subject: Additional analysis Boston/Hampton Site

Dimple,

Our client would like to analyze samples collected from 1 foot bgs from locations B-9, B-10, B-11, and B-12 for RCRA 8 Metals on a three day turnaround. Please confirm this is possible and when we can have the results.

Charles Rome Albion Partners 410 China Basin Street San Francisco, CA 94158 415-355-6646 office 510-301-9290 cell



Client: Vista Environmental Consulting, Inc

# Login Number: 53093 List Number: 1

Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-53093-2

List Source: TestAmerica Pleasanton



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

# TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

# TestAmerica Job ID: 720-53093-3

Client Project/Site: Boston/Hampton Road Sites

# For:

Vista Environmental Consulting, Inc 2984 Teagarden Street San Leandro, California 94577

Attn: Jeff Austin

Athaema

Authorized for release by: 11/7/2013 4:51:43 PM

Dimple Sharma, Project Manager I (925)484-1919 dimple.sharma@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
QC Sample Results	18
QC Association Summary	22
Lab Chronicle	24
Certification Summary	27
Method Summary	28
Sample Summary	29
Chain of Custody	30
Receipt Checklists	31

3

# Qualifiers

# GC Semi VOA

ualifier	Qualifier Description	
	Sample was prepped or analyzed beyond the specified holding time	
	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.	
	Surrogate is outside control limits	
eneral Ch		

# General Chemistry

Qualifier	Qualifier Description
F	MS/MSD Recovery and/or RPD exceeds the control limits

# Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	9
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

# Job ID: 720-53093-3

# Laboratory: TestAmerica Pleasanton

# Narrative

Job Narrative 720-53093-3

# Comments

No additional comments.

# Receipt

The samples were received on 10/16/2013 5:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were  $2.6^{\circ}$  C and  $4.7^{\circ}$  C.

Except:

Could not read labels for samples B-10-1.0 and B-12-1.0. Logged those 2 samples on hold.

# GC Semi VOA

Method 8081A: The following sample was prepared outside the method defined holding time because the request for the test was made after the holding time for the sample expired: B-11-2.0 (720-53093-22), B-12-2.0 (720-53093-24), B-2-2.0 (720-53093-4), B-3-2.0 (720-53093-6), B-5-2.0 (720-53093-10), B-6-2.0 (720-53093-12), B-8-2.0 (720-53093-16).

Method 8081A: The % RPD between the primary and confirmation columns is >40% for sample B-7-2.0 (720-53093-14). Due to the coelution of a non-target peak, the lower value has been reported instead of the higher value for the following compound: 4,4'-DDD.

Method 8081A: The % RPD between the primary and confirmation columns is >40% for sample B-10-2.0 (720-53093-20). Due to the coelution of a non-target peak, the lower value has been reported instead of the higher value for the following compounds: Alpha-chlodane; gamma-chlodane.

Method 8081A: The following sample was diluted due to the abundance of non-target analytes: B-10-2.0 (720-53093-20), B-7-2.0 (720-53093-14). Elevated reporting limits (RLs) are provided.

Method 8081A: Surrogate recovery for the following sample was outside control limits: B-7-2.0 (720-53093-14). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

Metals No analytical or quality issues were noted.

**General Chemistry** No analytical or quality issues were noted.

**Organic Prep** No analytical or quality issues were noted.

# **Detection Summary**

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

# Lab Sample ID: 720-53093-4

Lab Sample ID: 720-53093-6

Lab Sample ID: 720-53093-9

Lab Sample ID: 720-53093-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	) Method	Prep Type
4,4'-DDT	3.0	Н	2.0		ug/Kg	1	8081A	Total/NA
Cadmium	1.4		0.46		mg/Kg	4	6010B	Total/NA
Lead	350		1.9		mg/Kg	4	6010B	Total/NA
Arsenic	5.2		3.7		mg/Kg	4	6010B	Total/NA

# Client Sample ID: B-3-2.0

Client Sample ID: B-2-2.0

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Dieldrin	2.8	H	1.9	ug/Kg	1	8081A	Total/NA
4,4'-DDT	3.9	н	1.9	ug/Kg	1	8081A	Total/NA
Lead	140		1.9	mg/Kg	4	6010B	Total/NA
Arsenic	5.0		3.8	mg/Kg	4	6010B	Total/NA

# Client Sample ID: B-5-1.0

No Detections.

# Client Sample ID: B-5-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Dieldrin	8.9	н —	2.0		ug/Kg	1	_	8081A	Total/NA
4,4'-DDT	5.4	Н	2.0		ug/Kg	1		8081A	Total/NA
4,4'-DDE	6.3	н	2.0		ug/Kg	1		8081A	Total/NA
4,4'-DDD	2.3	Н	2.0		ug/Kg	1		8081A	Total/NA
Lead	16		1.9		mg/Kg	4		6010B	Total/NA
Arsenic	5.9		3.7		mg/Kg	4		6010B	Total/NA

# Client Sample ID: B-6-2.0

No Detections.

# Client Sample ID: B-7-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DI	Method	Prep Type
Dieldrin	610	н —	19		ug/Kg	10		8081A	Total/NA
4,4'-DDT	170	Н	19		ug/Kg	10	8	8081A	Total/NA
4,4'-DDE	100	Н	19		ug/Kg	10	8	8081A	Total/NA
4,4'-DDD	33	Нр	19		ug/Kg	10		8081A	Total/NA
Endosulfan sulfate	33	н	19		ug/Kg	10	8	8081A	Total/NA
Lead	93		1.9		mg/Kg	4	(	6010B	Total/NA
Arsenic	6.7		3.8		mg/Kg	4		6010B	Total/NA

# Client Sample ID: B-8-1.0

No Detections.

# Client Sample ID: B-8-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Pre	р Туре
Dieldrin	50	Н	2.0		ug/Kg	1	_	8081A	Tota	al/NA
4,4'-DDT	17	Н	2.0		ug/Kg	1		8081A	Tota	al/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pleasanton

# Lab Sample ID: 720-53093-12

# Lab Sample ID: 720-53093-14

# Lab Sample ID: 720-53093-16

Lab Sample ID: 720-53093-15

# **Detection Summary**

# Client Sample ID: B-8-2.0 (Continued)

# Lab Sample ID: 720-53093-16

Lab Sample ID: 720-53093-20

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
4,4'-DDE	8.6	H	2.0	ug/Kg	1	8081A	Total/NA
4,4'-DDD	5.4	Н	2.0	ug/Kg	1	8081A	Total/NA
Lead	12		2.0	mg/Kg	4	6010B	Total/NA
Arsenic	6.7		4.0	mg/Kg	4	6010B	Total/NA

# Client Sample ID: B-10-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
4,4'-DDT	120	H	4.0		ug/Kg	2	8081A	Total/NA
4,4'-DDE	170	Н	4.0		ug/Kg	2	8081A	Total/NA
Chlordane (technical)	720	Н	80		ug/Kg	2	8081A	Total/NA
alpha-Chlordane	100	Нр	4.0		ug/Kg	2	8081A	Total/NA
gamma-Chlordane	90	Нр	4.0		ug/Kg	2	8081A	Total/NA

# Client Sample ID: B-11-2.0

## Analyte Result Qualifier RL MDL Unit Dil Fac D Method Prep Type Dieldrin 3.3 Hp 2.0 ug/Kg 1 8081A Total/NA 4,4'-DDT 10 H 2.0 ug/Kg 1 8081A Total/NA 4,4'-DDE 8.9 H 8081A Total/NA 2.0 ug/Kg 1 4,4'-DDD 4.6 Hp 2.0 ug/Kg 1 8081A Total/NA

# Client Sample ID: B-12-2.0

This Detection Summary does not include radiochemical test results.

No Detections.

Lab Sample ID: 720-53093-24

 2
 8081A
 Total/NA

 2
 8081A
 Total/NA
 10

 Lab Sample ID: 720-53093-22
 11

5

# Lab Sample ID: 720-53093-4 Matrix: Solid

Date Collected: 10/16/13 09:55 Date Received: 10/16/13 17:10

Client Sample ID: B-2-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Dieldrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Endrin aldehyde	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Endrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Endrin ketone	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Heptachlor	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Heptachlor epoxide	ND	Η	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
4,4'-DDT	3.0	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
4,4'-DDE	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
4,4'-DDD	ND	Η	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Endosulfan I	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Endosulfan II	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
alpha-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
peta-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
gamma-BHC (Lindane)	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
delta-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Endosulfan sulfate	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Methoxychlor	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Toxaphene	ND	Н	40		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Chlordane (technical)	ND	Н	40		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
alpha-Chlordane	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
gamma-Chlordane	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 01:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		57 - 122				11/04/13 18:51	11/05/13 01:36	1
DCB Decachlorobiphenyl	101		21 - 136				11/04/13 18:51	11/05/13 01:36	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	1.4		0.46		mg/Kg		11/04/13 17:37	11/05/13 13:21	4
Lead	350		1.9		mg/Kg		11/04/13 17:37	11/05/13 13:21	4
Arsenic	5.2		3.7		mg/Kg		11/04/13 17:37	11/05/13 13:21	4

# Lab Sample ID: 720-53093-6 Matrix: Solid

Date Collected: 10/16/13 10:10 Date Received: 10/16/13 17:10

Client Sample ID: B-3-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Dieldrin	2.8	н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Endrin aldehyde	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Endrin	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Endrin ketone	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Heptachlor	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Heptachlor epoxide	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
4,4'-DDT	3.9	н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
4,4'-DDE	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
4,4'-DDD	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Endosulfan I	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Endosulfan II	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
alpha-BHC	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
beta-BHC	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
gamma-BHC (Lindane)	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
delta-BHC	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Endosulfan sulfate	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Methoxychlor	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Toxaphene	ND	Н	39		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Chlordane (technical)	ND	Н	39		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
alpha-Chlordane	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
gamma-Chlordane	ND	Н	1.9		ug/Kg		11/04/13 18:51	11/05/13 01:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	103		57 - 122				11/04/13 18:51	11/05/13 01:53	1
DCB Decachlorobiphenyl	98		21 - 136				11/04/13 18:51	11/05/13 01:53	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	140		1.9		mg/Kg		11/04/13 17:37	11/05/13 13:25	4
Arsenic	5.0		3.8		mg/Kg		11/04/13 17:37	11/05/13 13:25	4

# **Client Sample Results**

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Client Sample ID: B-5-1.0							Lab Sam	ple ID: 720-5	3093-9
Date Collected: 10/16/13 10:45								Matri	x: Solid
Date Received: 10/16/13 17:10									
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		2.0		mg/Kg		11/05/13 12:00	11/06/13 17:42	2

# Lab Sample ID: 720-53093-10 Matrix: Solid

Date Collected: 10/16/13 10:50 Date Received: 10/16/13 17:10

Client Sample ID: B-5-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Dieldrin	8.9	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Endrin aldehyde	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Endrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Endrin ketone	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Heptachlor	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Heptachlor epoxide	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
4,4'-DDT	5.4	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
4,4'-DDE	6.3	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
4,4'-DDD	2.3	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Endosulfan I	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Endosulfan II	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
alpha-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
beta-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
gamma-BHC (Lindane)	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
delta-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Endosulfan sulfate	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Methoxychlor	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Toxaphene	ND	Н	40		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Chlordane (technical)	ND	Н	40		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
alpha-Chlordane	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
gamma-Chlordane	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 02:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87		57 _ 122				11/04/13 18:51	11/05/13 02:09	1
DCB Decachlorobiphenyl	86		21 - 136				11/04/13 18:51	11/05/13 02:09	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	16		1.9		mg/Kg		11/04/13 17:37	11/05/13 13:38	4
Arsenic	5.9		3.7		mg/Kg		11/04/13 17:37	11/05/13 13:38	4

# Lab Sample ID: 720-53093-12 Matrix: Solid

Date Collected: 10/16/13 11:30 Date Received: 10/16/13 17:10

Client Sample ID: B-6-2.0

Analyte	Result	Qualifier	RL	MDL Un	nit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
Dieldrin	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
Endrin aldehyde	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
Endrin	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
Endrin ketone	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
Heptachlor	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
Heptachlor epoxide	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
4,4'-DDT	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
4,4'-DDE	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
4,4'-DDD	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
Endosulfan I	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
Endosulfan II	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
alpha-BHC	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
beta-BHC	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
gamma-BHC (Lindane)	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
delta-BHC	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
Endosulfan sulfate	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
Methoxychlor	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	ì
Toxaphene	ND	Н	40	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
Chlordane (technical)	ND	Н	40	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
alpha-Chlordane	ND	Н	2.0	uç	ig/Kg		11/04/13 18:51	11/05/13 02:26	1	
gamma-Chlordane	ND	Н	2.0	uç	ıg/Kg		11/04/13 18:51	11/05/13 02:26	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	89		57 _ 122				11/04/13 18:51	11/05/13 02:26	1	
DCB Decachlorobiphenyl	94		21 - 136				11/04/13 18:51	11/05/13 02:26	1	

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

# Lab Sample ID: 720-53093-14 Matrix: Solid

5

6

Date Collected: 10/16/13 11:50 Date Received: 10/16/13 17:10

Client Sample ID: B-7-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Dieldrin	610	н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Endrin aldehyde	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Endrin	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Endrin ketone	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Heptachlor	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Heptachlor epoxide	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
4,4'-DDT	170	н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
4,4'-DDE	100	н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
4,4'-DDD	33	Нр	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Endosulfan I	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Endosulfan II	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
alpha-BHC	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
beta-BHC	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
gamma-BHC (Lindane)	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
delta-BHC	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Endosulfan sulfate	33	н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Methoxychlor	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Toxaphene	ND	Н	390		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Chlordane (technical)	ND	Н	390		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
alpha-Chlordane	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
gamma-Chlordane	ND	Н	19		ug/Kg		11/04/13 18:51	11/06/13 03:15	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	121		57 - 122				11/04/13 18:51	11/06/13 03:15	10
DCB Decachlorobiphenyl	163	X	21 - 136				11/04/13 18:51	11/06/13 03:15	10
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	93		1.9		mg/Kg		11/04/13 17:37	11/05/13 13:42	4
Arsenic	6.7		3.8		mg/Kg		11/04/13 17:37	11/05/13 13:42	4

# **Client Sample Results**

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Client Sample ID: B-8-1.0							Lab Samp	le ID: 720-53	093-15
Date Collected: 10/16/13 12:20								Matri	ix: Solid
Date Received: 10/16/13 17:10									
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		1.9		mg/Kg		11/05/13 12:00	11/06/13 17:54	2

# Lab Sample ID: 720-53093-16 Matrix: Solid

Date Collected: 10/16/13 12:30 Date Received: 10/16/13 17:10

Client Sample ID: B-8-2.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Dieldrin	50	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Endrin aldehyde	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Endrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Endrin ketone	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Heptachlor	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Heptachlor epoxide	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
4,4'-DDT	17	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
4,4'-DDE	8.6	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
4,4'-DDD	5.4	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Endosulfan I	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Endosulfan II	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
alpha-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
beta-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
gamma-BHC (Lindane)	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
delta-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Endosulfan sulfate	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Methoxychlor	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Toxaphene	ND	Н	40		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Chlordane (technical)	ND	Н	40		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
alpha-Chlordane	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
gamma-Chlordane	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	111		57 - 122				11/04/13 18:51	11/05/13 03:00	1
DCB Decachlorobiphenyl	50	p	21 - 136				11/04/13 18:51	11/05/13 03:00	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	12		2.0		mg/Kg		11/04/13 17:37	11/05/13 13:46	4
Arsenic	6.7		4.0		mg/Kg		11/04/13 17:37	11/05/13 13:46	4

# TestAmerica Job ID: 720-53093-3

Lab Sample ID: 720-53093-20

Matrix: Solid

# Client Sample ID: B-10-2.0 Date Collected: 10/16/13 07:55

Date Received: 10/16/13 17:10

Method: 8081A - Organochic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Dieldrin	ND		4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Endrin aldehyde	ND		4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Endrin	ND		4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Endrin ketone	ND		4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Heptachlor	ND		4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Heptachlor epoxide	ND		4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
4,4'-DDT	120	н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
4.4'-DDE	170	н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
4,4'-DDD	ND	Н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Endosulfan I	ND	н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Endosulfan II	ND	н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
alpha-BHC	ND	Н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
beta-BHC	ND	Н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
gamma-BHC (Lindane)	ND	Н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
delta-BHC	ND	Н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Endosulfan sulfate	ND	н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Methoxychlor	ND	Н	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Toxaphene	ND	Н	80		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Chlordane (technical)	720	н	80		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
alpha-Chlordane	100	Нр	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
gamma-Chlordane	90	Нр	4.0		ug/Kg		11/04/13 18:51	11/06/13 03:32	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	96		57 _ 122				11/04/13 18:51	11/06/13 03:32	2
DCB Decachlorobiphenyl	104		21 - 136				11/04/13 18:51	11/06/13 03:32	2

# Lab Sample ID: 720-53093-22 Matrix: Solid

Date Collected: 10/16/13 08:10 Date Received: 10/16/13 17:10

Client Sample ID: B-11-2.0

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Aldrin	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Dieldrin	3.3	Нр	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Endrin aldehyde	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Endrin	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Endrin ketone	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Heptachlor	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Heptachlor epoxide	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
4,4'-DDT	10	н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
4,4'-DDE	8.9	н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
4,4'-DDD	4.6	Нр	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Endosulfan I	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Endosulfan II	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
alpha-BHC	ND	Η	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
beta-BHC	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
gamma-BHC (Lindane)	ND	н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
delta-BHC	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Endosulfan sulfate	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Methoxychlor	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Toxaphene	ND	Н	39	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Chlordane (technical)	ND	Н	39	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
alpha-Chlordane	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
gamma-Chlordane	ND	Н	2.0	ug/Kg		11/04/13 18:51	11/05/13 03:34	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
Tetrachloro-m-xylene	92		57 - 122			11/04/13 18:51	11/05/13 03:34	1	
DCB Decachlorobiphenyl	86		21 - 136			11/04/13 18:51	11/05/13 03:34	1	

# TestAmerica Job ID: 720-53093-3

Lab Sample ID: 720-53093-24

Matrix: Solid

# Client Sample ID: B-12-2.0

Date Collected: 10/16/13 08:25 Date Received: 10/16/13 17:10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Dieldrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Endrin aldehyde	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Endrin	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Endrin ketone	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Heptachlor	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Heptachlor epoxide	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
4,4'-DDT	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
4,4'-DDE	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
4,4'-DDD	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Endosulfan I	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Endosulfan II	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
alpha-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
beta-BHC	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
gamma-BHC (Lindane)	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
delta-BHC	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Endosulfan sulfate	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Methoxychlor	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Toxaphene	ND	Н	39		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Chlordane (technical)	ND	Н	39		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
alpha-Chlordane	ND	н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
gamma-Chlordane	ND	Н	2.0		ug/Kg		11/04/13 18:51	11/05/13 03:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	111		57 _ 122				11/04/13 18:51	11/05/13 03:51	1
DCB Decachlorobiphenyl	96		21 - 136				11/04/13 18:51	11/05/13 03:51	1

Lab Sample ID: MB 720-147635/1-A

**Client Sample ID: Method Blank** 

5 6

# 7

Matrix: Solid Analysis Batch: 147652								Prep Type: 1 Prep Batch:	
· · · · · · · · · · · · · · · · · · ·	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Dieldrin	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Endrin aldehyde	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Endrin	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Endrin ketone	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Heptachlor	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Heptachlor epoxide	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
4,4'-DDT	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
4,4'-DDE	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
4,4'-DDD	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Endosulfan I	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Endosulfan II	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
alpha-BHC	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
beta-BHC	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
gamma-BHC (Lindane)	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
delta-BHC	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Endosulfan sulfate	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Methoxychlor	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Toxaphene	ND		40		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
Chlordane (technical)	ND		40		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
alpha-Chlordane	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
gamma-Chlordane	ND		2.0		ug/Kg		11/04/13 10:06	11/04/13 22:30	1
	МВ	МВ							
Surrogato	% Pacavary	Qualifier	Limite				Proparad	Analyzod	Dil Eac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	101		57 - 122	11/04/13 10:06	11/04/13 22:30	1
DCB Decachlorobiphenyl	112		21 - 136	11/04/13 10:06	11/04/13 22:30	1

# Lab Sample ID: LCS 720-147635/2-A Matrix: Solid

# Analysis Batch: 147652

Analysis Batch: 147652	Spike	105	LCS				Prep Batch: 147635 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Aldrin	16.5	16.5		ug/Kg	— —	101	65 - 120
Dieldrin	16.5	17.1		ug/Kg		104	72 - 120
Endrin aldehyde	16.5	17.0		ug/Kg		104	68 - 120
Endrin	16.5	17.7		ug/Kg		107	68 - 120
Endrin ketone	16.5	16.9		ug/Kg		103	67 _ 120
Heptachlor	16.5	16.1		ug/Kg		98	69 - 120
Heptachlor epoxide	16.5	17.6		ug/Kg		107	68 - 120
4,4'-DDT	16.5	17.9		ug/Kg		109	63 - 127
4,4'-DDE	16.5	17.3		ug/Kg		105	70 - 120
4,4'-DDD	16.5	17.8		ug/Kg		108	69 ₋ 120
Endosulfan I	16.5	16.8		ug/Kg		102	62 - 120
Endosulfan II	16.5	17.5		ug/Kg		106	65 - 120
alpha-BHC	16.5	16.2		ug/Kg		98	62 - 120
beta-BHC	16.5	17.3		ug/Kg		105	74 ₋ 124
gamma-BHC (Lindane)	16.5	16.6		ug/Kg		101	72 - 120
delta-BHC	16.5	17.5		ug/Kg		106	64 - 120

TestAmerica Pleasanton

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

# Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 720-147635/2-A Matrix: Solid Analysis Batch: 147652					Client	Sample	ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 147635
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Endosulfan sulfate	16.5	17.8		ug/Kg		108	67 _ 120
Methoxychlor	16.5	18.9		ug/Kg		115	71 - 132
alpha-Chlordane	16.5	17.1		ug/Kg		104	70 _ 120
gamma-Chlordane	16.5	17.0		ug/Kg		103	68 - 120
LCS	LCS						

	200	200	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	100		57 _ 122
DCB Decachlorobiphenyl	116		21 - 136

# Lab Sample ID: LCSD 720-147635/3-A

# Matrix: Solid

Analysis Batch: 147652							Prep I	Batch: 1	47635
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	16.3	15.5		ug/Kg		95	65 _ 120	7	20
Dieldrin	16.3	15.7		ug/Kg		96	72 - 120	9	20
Endrin aldehyde	16.3	14.2		ug/Kg		87	68 - 120	18	20
Endrin	16.3	16.1		ug/Kg		99	68 - 120	9	20
Endrin ketone	16.3	15.4		ug/Kg		94	67 _ 120	9	20
Heptachlor	16.3	14.7		ug/Kg		90	69 - 120	9	20
Heptachlor epoxide	16.3	16.1		ug/Kg		99	68 - 120	9	20
4,4'-DDT	16.3	16.3		ug/Kg		100	63 - 127	9	20
4,4'-DDE	16.3	16.0		ug/Kg		98	70 - 120	8	20
4,4'-DDD	16.3	16.2		ug/Kg		99	69 _ 120	10	20
Endosulfan I	16.3	15.4		ug/Kg		94	62 _ 120	9	20
Endosulfan II	16.3	15.9		ug/Kg		98	65 - 120	9	35
alpha-BHC	16.3	15.0		ug/Kg		92	62 _ 120	8	20
beta-BHC	16.3	16.4		ug/Kg		101	74 - 124	5	20
gamma-BHC (Lindane)	16.3	15.3		ug/Kg		94	72 _ 120	9	20
delta-BHC	16.3	16.4		ug/Kg		101	64 _ 120	6	20
Endosulfan sulfate	16.3	16.1		ug/Kg		99	67 _ 120	10	20
Methoxychlor	16.3	17.1		ug/Kg		105	71 - 132	10	20
alpha-Chlordane	16.3	15.8		ug/Kg		97	70 - 120	8	20
gamma-Chlordane	16.3	15.7		ug/Kg		96	68 _ 120	8	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	92		57 _ 122
DCB Decachlorobiphenyl	107		21 - 136

# Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-147683/1-A Matrix: Solid Analysis Batch: 147750							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	Fotal/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	ND		0.13		mg/Kg		11/04/13 17:37	11/05/13 11:56	1

# Method: 6010B - Metals (ICP) (Continued)

Lab Sample ID: MB 720-147683/1-A Matrix: Solid											Client Sa		Г <mark>уре:</mark> То	tal/NA
Analysis Batch: 147750	мв	МВ										Prep	Batch: 1	47683
Analyte				RL		MDL	Unit		D	P	repared	Analy	zed	Dil Fac
Lead	ND			0.50			mg/Kg				4/13 17:37	11/05/13		1
Arsenic	ND			1.0			mg/Kg			11/0	4/13 17:37	11/05/13	11:56	1
Lab Sample ID: LCS 720-147683/2-A									Cli	ient	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid													Type: To	
Analysis Batch: 147750												Prep	Batch: 1	47683
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Cadmium			50.0		48.7			mg/Kg		_	97	80 - 120		
Lead			50.0		49.3			mg/Kg			99	80 - 120		
Arsenic			50.0		48.9			mg/Kg			98	80 - 120		
Lab Sample ID: LCSD 720-147683/3-A								Cli	ent S	Sam	ple ID: L	ab Contro	ol Samp	le Dup
Matrix: Solid												Prep 1	Type: To	tal/NA
Analysis Batch: 147750												Prep	Batch: 1	47683
			Spike		LCSD	LCS	D					%Rec.		RPD
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Cadmium			50.0		48.1			mg/Kg		_	96	80 - 120	1	20
Lead			50.0		48.5			mg/Kg			97	80 - 120	2	20
Arsenic			50.0		47.4			mg/Kg			95	80 - 120	3	20

# Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 500-210266/1-A											Client Sa	ample ID: Metho	od Blank
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 210744												Prep Batch	: 210266
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Chromium, hexavalent	ND			1.0			mg/Kg	1	1	11/0	5/13 12:00	11/06/13 17:37	1
									Clie	ent	Sample	ID: Lab Contro	l Sample
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 210744												Prep Batch	
			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qua	ifier	Unit		D	%Rec	Limits	
Chromium, hexavalent			10.0		8.21			mg/Kg		_	82	80 - 120	
									Clie	ent	Sample	ID: Lab Contro	l Sample
Matrix: Solid												Prep Type:	Total/NA
Analysis Batch: 210744												Prep Batch	: 210266
-			Spike		LCS	LCS						%Rec.	
Analyte			Added		Result	Qua	ifier	Unit		D	%Rec	Limits	
Chromium, hexavalent			869		753			mg/Kg		_	87	80 - 120	

# Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: 720-53093-9 MS									Client Sam	· · · · · · · · · · · · · · · · · · ·	
Matrix: Solid										Type: Tot	
Analysis Batch: 210744	Sampla	Samala	Spike	MS	MS				%Rec.	Batch: 2	10266
A		Sample	Spike			11		0/ <b>D</b>	%Rec.		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec			
Chromium, hexavalent	ND		38.9	22.9	F	mg/Kg		59	75 - 125		
Lab Sample ID: 720-53093-9 MS									Client Sam	ple ID: B	-5-1.0
Matrix: Solid									Prep 1	· Type: Tot	al/NA
Analysis Batch: 210744										Batch: 2	
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chromium, hexavalent	ND		838	609	F	mg/Kg		73	75 - 125		
Lab Sample ID: 720-53093-9 MSD									Client Sam	ple ID: B	-5-1.0
Matrix: Solid									Prep 1	Type: Tot	al/NA
Analysis Batch: 210744									Prep	Batch: 2	10266
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	ND		39.8	26.2	F	mg/Kg		66	75 _ 125	13	30
Lab Sample ID: 720-53093-9 MSD									Client Sam		
Matrix: Solid										Type: Tot	
Analysis Batch: 210744									Prep	Batch: 2	10266
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	ND		836	705		mg/Kg		84	75 - 125	15	30

Prep Type

Total/NA

Matrix

Solid

**Client Sample ID** 

B-2-2.0

B-3-2.0

B-5-2.0

B-6-2.0

B-7-2.0

B-8-2.0

B-10-2.0

B-11-2.0

B-12-2.0

Lab Control Sample

Method Blank

Lab Control Sample Dup

GC Semi VOA

Lab Sample ID

720-53093-4

720-53093-6

720-53093-10

720-53093-12

720-53093-14

720-53093-16

720-53093-20

720-53093-22

720-53093-24

LCS 720-147635/2-A

LCSD 720-147635/3-A

Prep Batch: 147635

Method

3546

3546

3546

3546

3546

3546

3546

3546

3546

3546

3546

8081A

Prep Batch

147635

MB 720-147635/1-A	Method Blank	Total/NA	Solid	3546		10
Analysis Batch: 14765	2					11
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
720-53093-4	B-2-2.0	Total/NA	Solid	8081A	147635	12
720-53093-6	B-3-2.0	Total/NA	Solid	8081A	147635	
720-53093-10	B-5-2.0	Total/NA	Solid	8081A	147635	13
720-53093-12	B-6-2.0	Total/NA	Solid	8081A	147635	
720-53093-16	B-8-2.0	Total/NA	Solid	8081A	147635	11
720-53093-22	B-11-2.0	Total/NA	Solid	8081A	147635	14
720-53093-24	B-12-2.0	Total/NA	Solid	8081A	147635	
LCS 720-147635/2-A	Lab Control Sample	Total/NA	Solid	8081A	147635	
LCSD 720-147635/3-A	Lab Control Sample Dup	Total/NA	Solid	8081A	147635	

Total/NA

# Analysis Batch: 147773

MB 720-147635/1-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-14	B-7-2.0	Total/NA	Solid	8081A	147635
720-53093-20	B-10-2.0	Total/NA	Solid	8081A	147635

# **Metals**

# Prep Batch: 147683

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-4	B-2-2.0	Total/NA	Solid	3050B	
720-53093-6	B-3-2.0	Total/NA	Solid	3050B	
720-53093-10	B-5-2.0	Total/NA	Solid	3050B	
720-53093-14	B-7-2.0	Total/NA	Solid	3050B	
720-53093-16	B-8-2.0	Total/NA	Solid	3050B	
LCS 720-147683/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-147683/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
MB 720-147683/1-A	Method Blank	Total/NA	Solid	3050B	

# Analysis Batch: 147750

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
720-53093-4	B-2-2.0	Total/NA	Solid	6010B	147683
720-53093-6	B-3-2.0	Total/NA	Solid	6010B	147683
720-53093-10	B-5-2.0	Total/NA	Solid	6010B	147683
720-53093-14	B-7-2.0	Total/NA	Solid	6010B	147683

Client Sample ID

Lab Control Sample

Lab Control Sample

Method Blank

B-5-1.0

B-5-1.0

B-5-1.0

B-5-1.0

B-5-1.0

B-8-1.0

# 8 9 10 11

Prep Batch

MB 500-210266/1-A Analysis Batch: 210744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-9	B-5-1.0	Total/NA	Solid	7196A	210266
720-53093-9 MS	B-5-1.0	Total/NA	Solid	7196A	210266
720-53093-9 MS	B-5-1.0	Total/NA	Solid	7196A	210266
720-53093-9 MSD	B-5-1.0	Total/NA	Solid	7196A	210266
720-53093-9 MSD	B-5-1.0	Total/NA	Solid	7196A	210266
720-53093-15	B-8-1.0	Total/NA	Solid	7196A	210266
LCS 500-210266/2-A	Lab Control Sample	Total/NA	Solid	7196A	210266
LCS 500-210266/3-A	Lab Control Sample	Total/NA	Solid	7196A	210266
MB 500-210266/1-A	Method Blank	Total/NA	Solid	7196A	210266

# Analysis Batch: 147750 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-16	B-8-2.0	Total/NA	Solid	6010B	147683
LCS 720-147683/2-A	Lab Control Sample	Total/NA	Solid	6010B	147683
LCSD 720-147683/3-A	Lab Control Sample Dup	Total/NA	Solid	6010B	147683
MB 720-147683/1-A	Method Blank	Total/NA	Solid	6010B	147683

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Method

3060A

3060A

3060A

3060A

3060A

3060A

3060A

3060A

3060A

# General Chemistry

Prep Batch: 210266

Lab Sample ID

720-53093-9 MS

720-53093-9 MS

720-53093-9 MSD

720-53093-9 MSD

LCS 500-210266/2-A

LCS 500-210266/3-A

720-53093-15

720-53093-9

Metals (Continued)

lient Samp	le ID: B-2-2.	.0						Lab Sample ID: 720-53093-4
	l: 10/16/13 09:5							Matrix: Solid
	: 10/16/13 17:1							
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			147635	11/04/13 18:51	BB	TAL PLS
Total/NA	Analysis	8081A		1	147652	11/05/13 01:36	JZT	TAL PLS
Total/NA	Prep	3050B			147683	11/04/13 17:37	CTD	TAL PLS
Total/NA	Analysis	6010B		4	147083	11/04/13 17:37	EFH	TAL PLS TAL PLS
-	Analysis	00100		т	1-11100	11/00/10 10.21	L! ! !	
Client Samp	le ID: B-3-2	.0						Lab Sample ID: 720-53093-6
Date Collected								Matrix: Solid
Date Received:								
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep				147635	11/04/13 18:51	BB	TAL PLS
Total/NA	Analysis	8081A		1	147652	11/05/13 01:53	JZT	TAL PLS
	-							
Total/NA	Prep	3050B		4	147683	11/04/13 17:37	CTD	TAL PLS
Total/NA	Analysis	6010B		4	147750	11/05/13 13:25	EFH	TAL PLS
Client Samp	IE ID: B-5-1.	0						Lab Sample ID: 720-53093-9
Date Collected								Matrix: Solid
Date Received:								
_				<b>D</b> ¹¹ <i>d</i> ¹ <b>e e</b>				
	Batch	Batch	<b>D</b>	Dilution	Batch	Prepared	• - h 4	
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	
Total/NA	Prep	3060A		2	210266 210744	11/05/13 12:00	JLE	TAL CHI
Total/NA	Analysis	7196A		2		11/06/12 17:42	JLE	TAL CHI
					. ,	11/06/13 17:42		
					(ENa)	11/06/13 17:43		
		0						Lab Sample ID: 720-53093-10
Client Samp	In ID: B.5.2							Matrix: Solid
Client Samp								
Date Collected	l: 10/16/13 10:5	50						Wath X. Sont
	l: 10/16/13 10:5	50						
Date Collected	l: 10/16/13 10:5	50		Dilution	Batch	Prepared		
Date Collected	l: 10/16/13 10:5 : 10/16/13 17:1	50 10	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	
Date Collected Date Received:	l: 10/16/13 10:5 : 10/16/13 17:1 Batch	50 IO Batch	Run			•	Analyst JZT	

# Total/NA 6010B Analysis Client Sample ID: B-6-2.0 Date Collected: 10/16/13 11:30

Prep

Prep

3546

3050B

# Date Received: 10/16/13 17:10

Total/NA

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			147635	11/04/13 18:51	BB	TAL PLS
Total/NA	Analysis	8081A		1	147652	11/05/13 02:26	JZT	TAL PLS

4

TestAmerica Pleasanton

TAL PLS

TAL PLS

TAL PLS

Lab Sample ID: 720-53093-12

147635

147683

11/04/13 18:51

147750 11/05/13 13:38 EFH

11/04/13 17:37 CTD

BB

Matrix: Solid

	'							TestAmerica Jo	ob ID: 720-53093-3
	vironmental Co ston/Hampton	-							
Client Samp	le ID: B-7-2.	.0					La	ab Sample II	): 720-53093-14
Date Collected	: 10/16/13 11:5	50							Matrix: Solid
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3546			147635	11/04/13 18:51	BB	TAL PLS	
Total/NA	Analysis	8081A		10	147773	11/06/13 03:15	MQL	TAL PLS	
Total/NA	Prep	3050B			147683	11/04/13 17:37	CTD	TAL PLS	
Total/NA	Analysis	6010B		4	147750	11/05/13 13:42	EFH	TAL PLS	
Client Samp	In: B-8-1	<u></u>					La	h Sample  [	0: 720-53093-15
Date Collected:								10 Oumpre	Matrix: Solid
Date Conected									Wide IA: Com
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	- 3060A			210266	11/05/13 12:00	JLE	TAL CHI	
Total/NA	Analysis	7196A		2	210744		JLE	TAL CHI	
					(Start)	11/06/13 17:54			
					. ,				
					(End)	11/06/13 17:55			
Date Collected	: 10/16/13 12:3	30			(End)	11/06/13 17:55	La	ab Sample IE	D: 720-53093-16 Matrix: Solid
Date Collected	: 10/16/13 12:3	30		Dilution	(End) Batch	11/06/13 17:55 Prepared	La	ab Sample II	
Date Collected Date Received: Prep Type	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type	30 10 Batch Method	<u>Run</u>	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Date Collected Date Received: Prep Type Total/NA	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep	30 0 Batch <u>Method</u> 3546	Run	Factor	Batch Number 147635	Prepared or Analyzed 11/04/13 18:51	Analyst BB	- Lab TAL PLS	
Date Collected Date Received: Prep Type	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type	30 10 Batch Method	Run		Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep	30 0 Batch <u>Method</u> 3546	Run	Factor	Batch Number 147635	Prepared or Analyzed 11/04/13 18:51	Analyst BB	- Lab TAL PLS	
Date Collected Date Received: Prep Type Total/NA Total/NA	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis	30 0 Batch - Method 3546 8081A	Run	Factor	Batch Number 147635 147652	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00	Analyst BB JZT	- Lab TAL PLS TAL PLS	
Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Total/NA	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis	30 10 Batch Method 3546 8081A 3050B 6010B 2.0	Run	<b>Factor</b>	Batch Number 147635 147652 147683	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37	Analyst BB JZT CTD EFH	Lab TAL PLS TAL PLS TAL PLS TAL PLS	
Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Total/NA Client Samp Date Collected:	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5	30 10 Batch Method 3546 8081A 3050B 6010B 2.0 55	Run	<b>Factor</b>	Batch Number 147635 147652 147683	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37	Analyst BB JZT CTD EFH	Lab TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid
Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Total/NA Client Samp Date Collected:	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5	30 10 Batch Method 3546 8081A 3050B 6010B 2.0 55	Run	<b>Factor</b>	Batch Number 147635 147652 147683	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37	Analyst BB JZT CTD EFH	Lab TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid
Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Total/NA Client Samp Date Collected:	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5 : 10/16/13 17:1	30 0 Batch Method 3546 8081A 3050B 6010B 2.0 55 0	Run	<b>Factor</b> 1 4	Batch Number 147635 147652 147683 147750	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37 11/05/13 13:46	Analyst BB JZT CTD EFH	Lab TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid
Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Total/NA Client Samp Date Collected: Date Received:	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5 : 10/16/13 17:1 Batch	30 0 Batch Method 3546 8081A 3050B 6010B 2.0 55 10 Batch		Factor1 4 Dilution	Batch Number 147635 147652 147683 147750 Batch	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37 11/05/13 13:46 Prepared	Analyst BB JZT CTD EFH	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid
Date Collected Date Received: Prep Type Total/NA Total/NA Total/NA Client Samp Date Collected Date Received: Prep Type	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5 : 10/16/13 17:1 Batch Type	30 0 Batch Method 3546 8081A 3050B 6010B 2.0 55 0 Batch Method		Factor14Dilution Factor	Batch Number 147635 147652 147683 147750 Batch Number	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37 11/05/13 13:46 Prepared or Analyzed	Analyst BB JZT CTD EFH La	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid
Date Collected Date Received: Prep Type Total/NA Total/NA Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Total/NA	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5 : 10/16/13 17:1 Batch Type Analysis Prep	30 0 Batch Method 3546 8081A 3050B 6010B 2.0 55 0 Batch Method 8081A 35546		Factor14Dilution Factor	Batch Number 147635 147652 147683 147750 Batch Number 147773	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37 11/05/13 13:46 Prepared or Analyzed 11/06/13 03:32	Analyst BB JZT CTD EFH La MQL BB	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid D: 720-53093-20 Matrix: Solid
Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Total/NA Client Samp Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Client Samp Date Collected:	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5 : 10/16/13 17:1 Batch Type Analysis Prep Ie ID: B-11-2 : 10/16/13 08:1	30 10 Batch Method 3546 8081A 3050B 6010B 2.0 55 10 Batch Method 8081A 3546 2.0 10 10		Factor14Dilution Factor	Batch Number 147635 147652 147683 147750 Batch Number 147773	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37 11/05/13 13:46 Prepared or Analyzed 11/06/13 03:32	Analyst BB JZT CTD EFH La MQL BB	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid D: 720-53093-20 Matrix: Solid D: 720-53093-22
Date Collected Date Received: Prep Type Total/NA Total/NA Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Total/NA Client Samp	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5 : 10/16/13 17:1 Batch Type Analysis Prep Ie ID: B-11-2 : 10/16/13 08:1	30 10 Batch Method 3546 8081A 3050B 6010B 2.0 55 10 Batch Method 8081A 3546 2.0 10 10		Factor14Dilution Factor	Batch Number 147635 147652 147683 147750 Batch Number 147773	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37 11/05/13 13:46 Prepared or Analyzed 11/06/13 03:32	Analyst BB JZT CTD EFH La MQL BB	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid D: 720-53093-20 Matrix: Solid D: 720-53093-22
Date Collected Date Received Total/NA Total/NA Total/NA Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5 : 10/16/13 17:1 Batch Type Analysis Prep Ie ID: B-11-2 : 10/16/13 08:1	30 0 Batch Method 3546 8081A 3050B 6010B 2.0 55 10 Batch Method 8081A 3546 2.0 10 10 10 10 10 10 10 10 10 1	Run	Factor	Batch Number 147635 147652 147683 147750 Batch Number 147773 147635 Batch	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37 11/05/13 13:46 Prepared or Analyzed 11/06/13 03:32 11/04/13 18:51 Prepared	Analyst BB JZT CTD EFH La MQL BB	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid
Date Collected: Date Received: Prep Type Total/NA Total/NA Total/NA Total/NA Client Sampl Date Collected: Date Received: Prep Type Total/NA Total/NA Client Sampl Date Collected: Date Received: Date Received: Prep Type	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5 : 10/16/13 17:1 Batch Type Analysis Prep Ie ID: B-11-2 : 10/16/13 08:1 : 10/16/13 17:1	30 0 Batch Method 3546 8081A 3050B 6010B 2.0 55 10 Batch Method 2.0 10 10 10 Batch Method		Factor 1 4 Dilution Factor 2	Batch Number 147635 147652 147683 147750 Batch Number 147773 147635 Batch Number	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37 11/05/13 13:46 Prepared or Analyzed 11/06/13 03:32 11/04/13 18:51 Prepared or Analyzed	Analyst BB JZT CTD EFH La MQL BB La	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid D: 720-53093-20 Matrix: Solid D: 720-53093-22
Date Collected Date Received Total/NA Total/NA Total/NA Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected	: 10/16/13 12:3 : 10/16/13 17:1 Batch Type Prep Analysis Prep Analysis Ie ID: B-10-2 : 10/16/13 07:5 : 10/16/13 17:1 Batch Type Analysis Prep Ie ID: B-11-2 : 10/16/13 08:1 : 10/16/13 17:1	30 0 Batch Method 3546 8081A 3050B 6010B 2.0 55 10 Batch Method 8081A 3546 2.0 10 10 10 10 10 10 10 10 10 1	Run	Factor	Batch Number 147635 147652 147683 147750 Batch Number 147773 147635 Batch	Prepared or Analyzed 11/04/13 18:51 11/05/13 03:00 11/04/13 17:37 11/05/13 13:46 Prepared or Analyzed 11/06/13 03:32 11/04/13 18:51 Prepared	Analyst BB JZT CTD EFH La MQL BB	Lab TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS TAL PLS	Matrix: Solid D: 720-53093-20 Matrix: Solid D: 720-53093-22
Lab Sample ID: 720-53093-24

Matrix: Solid

### Client Sample ID: B-12-2.0 Date Collected: 10/16/13 08:25

Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			147635	11/04/13 18:51	BB	TAL PLS
Total/NA	Analysis	8081A		1	147652	11/05/13 03:51	JZT	TAL PLS

### Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

# 1 2 3 4 5 6 7 8 9 10

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

### Laboratory: TestAmerica Chicago

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alabama	State Program	4	40461	04-30-14
California	NELAP	9	01132CA	04-30-14
Georgia	State Program	4	N/A	04-30-14
Hawaii	State Program	9	N/A	04-30-14
Illinois	NELAP	5	100201	04-30-14
Indiana	State Program	5	C-IL-02	04-30-14
lowa	State Program	7	82	05-01-14
Kansas	NELAP	7	E-10161	10-31-14 *
Kentucky	State Program	4	90023	12-31-13
Kentucky (UST)	State Program	4	66	04-30-14
Louisiana	NELAP	6	30720	06-30-14
Massachusetts	State Program	1	M-IL035	06-30-14
Mississippi	State Program	4	N/A	04-30-14
North Carolina DENR	State Program	4	291	12-31-13
North Dakota	State Program	8	R-194	04-30-14
Oklahoma	State Program	6	8908	08-31-14
South Carolina	State Program	4	77001	04-30-14
Texas	NELAP	6	T104704252-09-TX	02-28-14
USDA	Federal		P330-12-00038	02-06-15
Wisconsin	State Program	5	999580010	08-31-14
Wyoming	State Program	8	8TMS-Q	04-30-14

### Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Method	Method Description	Protocol	Laboratory
8081A	Organochlorine Pesticides (GC)	SW846	TAL PLS
6010B	Metals (ICP)	SW846	TAL PLS
7196A	Chromium, Hexavalent	SW846	TAL CHI

### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

### Sample Summary

TestAmerica Job ID: 720-53093-3

### Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-53093-4	B-2-2.0	Solid	10/16/13 09:55	10/16/13 17:10
720-53093-6	B-3-2.0	Solid	10/16/13 10:10	10/16/13 17:10
720-53093-9	B-5-1.0	Solid	10/16/13 10:45	10/16/13 17:10
720-53093-10	B-5-2.0	Solid	10/16/13 10:50	10/16/13 17:10
720-53093-12	B-6-2.0	Solid	10/16/13 11:30	10/16/13 17:10
720-53093-14	B-7-2.0	Solid	10/16/13 11:50	10/16/13 17:10
720-53093-15	B-8-1.0	Solid	10/16/13 12:20	10/16/13 17:10
720-53093-16	B-8-2.0	Solid	10/16/13 12:30	10/16/13 17:10
720-53093-20	B-10-2.0	Solid	10/16/13 07:55	10/16/13 17:10
720-53093-22	B-11-2.0	Solid	10/16/13 08:10	10/16/13 17:10
720-53093-24	B-12-2.0	Solid	10/16/13 08:25	10/16/13 17:10



### Sharma, Dimple

From: Jeff Austin [jeff@vista-env.com]

- Sent: Friday, November 01, 2013 5:19 PM
- To: Sharma, Dimple

Cc: chuckbove@vista-env.com

Subject: Fw: RE: Boston Road and hampton Road sampling

Dimple,

More analyses for the Boston/Hampton Road project; deeper samples currently on hold. Here is what we need:

- B-2-2.0: Lead, cadmium, arsenic, pesticides
- B-3-2.0: lead, arsenic, pesticides
- B-5-2.0: lead, arsenic, pesticides
- B-6-2.0: pesticides
- B-7-2.0: lead, arsenic, pesticides B-8-2.0: lead, arsenic, pesticides
- B-10-2.0: pesticides
- B-11-2.0: pesticides
- B-12-2.0: pesticides

Additional shallow sample analyses:

B-5-1.0: hexavalent chromium

B-8-1.0: hexavalent chromium

Please report only those requested metals. Please also confirm receipt of this email.

Thanks and have a great weekend, Jeff Austin Senior Project Manager Vista Environmental cell: (415) 218-0027 email: jeff@vista-env.com

From: Freitag, Rod, GSA-Technical Services Department [mailto:rfreitag@acgov.org]
To: 'Chuck Bove' [mailto:chuckbove@vista-env.com]
Cc: Garrison, Jason GSA- Technical Service Department [mailto:jason.garrison@acgov.org], 'Chris Burns' [mailto:chrisburns@vista-env.com], jeff@vista-env.com [mailto:jeff@vista-env.com]
Sent: Fri, 01 Nov 2013 15:23:58 -0800
Subject: RE: Boston Road and hampton Road sampling

Chuck:

See below for changes on hexavalent chrome. Thanks.

### Rod Freitag, Environmental Program Manager

Alameda County General Services Agency, TSD 1401 Lakeside Drive, Rm. 1115, Oakland, CA 94612 Ph (510) 208-9522 | Fax (510) 208-9530 | QIC 26023 Please consider the environment before printing this email.

### Login Sample Receipt Checklist

Client: Vista Environmental Consulting, Inc

### Login Number: 53093 List Number: 1

Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

14

Job Number: 720-53093-3

List Source: TestAmerica Pleasanton

Client: Vista Environmental Consulting, Inc

### Login Number: 53093 List Number: 1 Creator: Kelsey, Shawn M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

14

Job Number: 720-53093-3

List Source: TestAmerica Chicago

List Creation: 10/18/13 11:16 AM



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

### TestAmerica Laboratories, Inc.

TestAmerica Pleasanton 1220 Quarry Lane Pleasanton, CA 94566 Tel: (925)484-1919

### TestAmerica Job ID: 720-53093-4

Client Project/Site: Boston/Hampton Road Sites

### For:

Vista Environmental Consulting, Inc 2984 Teagarden Street San Leandro, California 94577

Attn: Jeff Austin

Athaema

Authorized for release by: 11/19/2013 5:02:11 PM

Dimple Sharma, Senior Project Manager (925)484-1919 dimple.sharma@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

### Qualifiers

### **General Chemistry**

		_
Qualifiers		3
General Chem	aistry	Λ
Qualifier	Qualifier Description	
Н	Sample was prepped or analyzed beyond the specified holding time	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	8
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	4
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
00	Quality Control	

### Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

### Job ID: 720-53093-4

### Laboratory: TestAmerica Pleasanton

### Narrative

Job Narrative 720-53093-4

### Comments

No additional comments.

### Receipt

The samples were received on 10/16/2013 5:10 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were  $2.6^{\circ}$  C and  $4.7^{\circ}$  C.

Except:

Could not read labels for samples B-10-1.0 and B-12-1.0. Logged those 2 samples on hold.

### Metals

No analytical or quality issues were noted.

### **General Chemistry**

Method 7196A: The following hexavalent chromium sample in batch 212685 was received with insufficient time remaining to perform the analysis within holding time: B-12-1.0 (720-53093-23). (The sample has a 30 day holding time and was received with 2 days till expiration.)

No other analytical or quality issues were noted.

### **Detection Summary**

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

TestAmerica Job ID: 720-53093-4

Lab Sample ID: 720-53093-23

Lab Sample ID: 720-53093-24

Client Sample ID: B-3-2.0						La	b Sam	ple ID: 720-53093-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Metho	d Prep Type
Mercury	0.073		0.0095		mg/Kg	1	7471A	Total/NA
Client Sample ID: B-10-2.0						Lat	Samp	le ID: 720-53093-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Metho	d Prep Type
Lead	36		1.9		mg/Kg	4	6010B	Total/NA
Arsenic	45		3.8		mg/Kg	4	6010B	Total/NA
Client Sample ID: B-11-2.0						Lab	Samp	le ID: 720-53093-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Metho	d Prep Type
Lead	330		2.0		mg/Kg	4	6010B	Total/NA
Arsenic	5.8		4.0		mg/Kg	4	6010B	Total/NA

### Client Sample ID: B-12-1.0

No Detections.

### Client Sample ID: B-12-2.0

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chromium	36		1.8	mg/Kg	4	6010B	Total/NA
Lead	10		1.8	mg/Kg	4	6010B	Total/NA
Barium	140		1.8	mg/Kg	4	6010B	Total/NA
Arsenic	5.9		3.6	mg/Kg	4	6010B	Total/NA

# 2 3 4 5 6 7 8 9 10 11

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Client Sample ID: B-3-2.0							Lab Sam	ple ID: 720-5	3093-6
Date Collected: 10/16/13 10:10								Matri	ix: Solid
Date Received: 10/16/13 17:10									
Method: 7471A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.073		0.0095		mg/Kg		11/12/13 12:51	11/12/13 16:51	1

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites TestAmerica Job ID: 720-53093-4

Client Sample ID: B-10-2.0							Lab Samp	le ID: 720-53	093-20
Date Collected: 10/16/13 07:55								Matri	x: Solid
Date Received: 10/16/13 17:10									
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	36		1.9		mg/Kg		11/12/13 09:45	11/13/13 01:32	4
Arsenic	45		3.8		mg/Kg		11/12/13 09:45	11/13/13 01:32	4

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites TestAmerica Job ID: 720-53093-4

Client Sample ID: B-11-2.0							Lab Samp	le ID: 720-53	093-22
Date Collected: 10/16/13 08:10								Matri	x: Solid
Date Received: 10/16/13 17:10									
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	330		2.0		mg/Kg		11/12/13 09:45	11/13/13 01:36	4
Arsenic	5.8		4.0		mg/Kg		11/12/13 09:45	11/13/13 01:36	4

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Client Sample ID: B-12-1.0	nple ID: B-12-1.0 Lab Sample ID: 720-53093-								093-23
Date Collected: 10/16/13 08:20								Matri	x: Solid
Date Received: 10/16/13 17:10									
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND	н –	2.0		mg/Kg		11/19/13 11:00	11/19/13 15:59	2

Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites TestAmerica Job ID: 720-53093-4

5

6

Client Sample ID: B-12-2.0							Lab Samp	le ID: 720-53	Client Sample ID: B-12-2.0 Lab Sample ID: 720-53093-24									
Date Collected: 10/16/13 08:25								Matri	x: Solid									
Date Received: 10/16/13 17:10																		
_ Method: 6010B - Metals (ICP)																		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac									
Chromium	36		1.8		mg/Kg		11/12/13 09:45	11/13/13 01:41	4									
Lead	10		1.8		mg/Kg		11/12/13 09:45	11/13/13 01:41	4									
Barium	140		1.8		mg/Kg		11/12/13 09:45	11/13/13 01:41	4									
Arsenic	5.9		3.6		mg/Kg		11/12/13 09:45	11/13/13 01:41	4									

### Method: 6010B - Metals (ICP)

Lab Sample ID: MB 720-148154/1-A Matrix: Solid											Client Sa	mple ID: Metho Prep Type: 1		
Analysis Batch: 148221												Prep Batch:	148154	5
	MB	МВ												J
Analyte	Result	Qualifier		RL		MDL	Unit		D	Pr	epared	Analyzed	Dil Fac	
Chromium	ND			0.50		i	mg/Kg	<b>J</b>		11/12	2/13 09:45	11/13/13 00:09	1	
Lead	ND			0.50		I	mg/Kg	J		11/12	2/13 09:45	11/13/13 00:09	1	-7
Barium	ND			0.50		I	mg/Kg	J		11/12	2/13 09:45	11/13/13 00:09	1	
Arsenic	ND			1.0			mg/Kg	]		11/12	2/13 09:45	11/13/13 00:09	1	8
Lab Sample ID: LCS 720-148154/2-A Matrix: Solid									CI	lient	Sample	ID: Lab Control Prep Type: 1		9
Analysis Batch: 148221												Prep Batch:	148154	
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qualif	lier	Unit		D	%Rec	Limits		
Chromium			50.0		49.4			mg/Kg			99	80 - 120		
Lead			50.0		49.7			mg/Kg			99	80 - 120		
Barium			50.0		50.5			mg/Kg			101	80 - 120		
Arsenic			50.0		48.0			mg/Kg			96	80 - 120		

Lab Sample ID: LCSD 720-148154/3-A	Clier	lient Sample ID: Lab Control Sample Dup							
Matrix: Solid							Prep T	ype: Tot	al/NA
Analysis Batch: 148221							Prep I	Batch: 14	48154
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium	50.0	50.9		mg/Kg		102	80 - 120	3	20
Lead	50.0	51.1		mg/Kg		102	80 - 120	3	20
Barium	50.0	51.9		mg/Kg		104	80 - 120	3	20
Arsenic	50.0	49.4		mg/Kg		99	80 - 120	3	20

### Method: 7471A - Mercury (CVAA)

Lab Sample ID: MB 720-148172/1-A											<b>Client S</b>	ample ID:	Method	Blank
Matrix: Solid												Prep T	ype: To	tal/NA
Analysis Batch: 148197												Prep I	Batch: 1	48172
-	МВ	МВ												
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyz	ed	Dil Fac
Mercury	ND			0.010			mg/Kg			11/1	2/13 12:51	11/12/13	16:39	1
Lab Sample ID: LCS 720-148172/2-A									CI	ient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid												Prep T	ype: To	tal/NA
Analysis Batch: 148197												Prep I	Batch: 1	48172
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Mercury			0.833		0.875			mg/Kg		_	105	80 - 120		
Lab Sample ID: LCSD 720-148172/3-A								Cli	ent	Sam	ple ID: L	ab Contro	I Samp	le Dup
Matrix: Solid												Prep T	ype: To	tal/NA
Analysis Batch: 148197												Prep I	Batch: 1	48172
			Spike		LCSD	LCS	D					%Rec.		RPD
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Mercury			0.833		0.867			mg/Kg		_	104	80 - 120	1	20

Chromium, hexavalent

Chromium, hexavalent

### Method: 7471A - Mercury (CVAA) (Continued)

Lab Sample ID: 720-53093-6 MS Matrix: Solid Analysis Batch: 148197										ple ID: E ype: To Batch: 1	tal/NA
Analysis Baten. 140107	Sample	Sample	Spike	MS	MS				%Rec.	Baten. I	40172
Analyte		Qualifier	Added	Result	Qualifier	Unit	1	D %Rec	Limits		
Mercury	0.073		0.694	0.806		mg/Kg		105	75 - 125		
Lab Sample ID: 720-53093-6 MSD									Client Sam	ple ID: E	3-3-2.(
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 148197									Prep	Batch: 1	48172
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	I	D %Rec	Limits	RPD	Limit
Mercury	0.073		0.769	0.900		mg/Kg		107	75 - 125	11	20
lethod: 7196A - Chromium, H	exaval	ent									
Lab Sample ID: MB 500-212558/1-A								Client	Sample ID:	Method	Blank
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 212685									Prep	Batch: 2	212558
		MB MB									
Analyte	R	esult Qualifi	ier	RL	MDL Un	it	D	Prepared	Analyz	zed	Dil Fac

			•	•			
Lab Sample ID: LCS 500-212558/2-A					Client	Sample	D: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 212685							Prep Batch: 212558
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chromium, hexavalent	10.0	8.80		mg/Kg		88	80 - 120
Lab Sample ID: LCS 500-212558/3-A					Client	Sample	ID: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 212685							Prep Batch: 212558
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

811

792

1.0

mg/Kg

mg/Kg

11/19/13 11:00

102

80 - 120

11/19/13 15:56

ND

1

### Metals

### Prep Batch: 148154

Lab Sample ID	Client Sample ID	Dren Turne	Mateix	Method	Prep Batch
720-53093-20	B-10-2.0	Prep Type Total/NA	Matrix Solid	<u>Wethod</u>	Prep Batch
720-53093-22	B-11-2.0	Total/NA	Solid	3050B	
720-53093-24	B-12-2.0	Total/NA	Solid	3050B	
LCS 720-148154/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCSD 720-148154/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
MB 720-148154/1-A	Method Blank	Total/NA	Solid	3050B	
rep Batch: 148172					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-6	B-3-2.0	Total/NA	Solid	7471A	
720-53093-6 MS	B-3-2.0	Total/NA	Solid	7471A	
720-53093-6 MSD	B-3-2.0	Total/NA	Solid	7471A	
LCS 720-148172/2-A	Lab Control Sample	Total/NA	Solid	7471A	
LCSD 720-148172/3-A	Lab Control Sample Dup	Total/NA	Solid	7471A	
MB 720-148172/1-A	Method Blank	Total/NA	Solid	7471A	
nalysis Batch: 148197	7				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-6	B-3-2.0	T . ( . 1/) ( A	0.4114		
	5020	Total/NA	Solid	7471A	148172
720-53093-6 MS	B-3-2.0	Total/NA Total/NA	Solid	7471A 7471A	
					148172
720-53093-6 MSD	B-3-2.0	Total/NA	Solid	7471A	148172 148172
720-53093-6 MSD LCS 720-148172/2-A	B-3-2.0 B-3-2.0	Total/NA Total/NA	Solid Solid	7471A 7471A	148172 148172 148172
720-53093-6 MS 720-53093-6 MSD LCS 720-148172/2-A LCSD 720-148172/3-A MB 720-148172/1-A	B-3-2.0 B-3-2.0 Lab Control Sample	Total/NA Total/NA Total/NA	Solid Solid Solid	7471A 7471A 7471A	148172 148172 148172 148172 148172 148172 148172
720-53093-6 MSD LCS 720-148172/2-A LCSD 720-148172/3-A	B-3-2.0 B-3-2.0 Lab Control Sample Lab Control Sample Dup Method Blank	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	7471A 7471A 7471A 7471A	148172 148172 148172 148172 148172
720-53093-6 MSD LCS 720-148172/2-A LCSD 720-148172/3-A MB 720-148172/1-A	B-3-2.0 B-3-2.0 Lab Control Sample Lab Control Sample Dup Method Blank	Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid	7471A 7471A 7471A 7471A	148172 148172 148172 148172 148172
720-53093-6 MSD LCS 720-148172/2-A LCSD 720-148172/3-A MB 720-148172/1-A nalysis Batch: 14822* Lab Sample ID	B-3-2.0 B-3-2.0 Lab Control Sample Lab Control Sample Dup Method Blank	Total/NA Total/NA Total/NA Total/NA Total/NA	Solid Solid Solid Solid Solid	7471A 7471A 7471A 7471A 7471A	148172 148172 148172 148172 148172 148172 <b>Prep Batch</b>
720-53093-6 MSD LCS 720-148172/2-A LCSD 720-148172/3-A MB 720-148172/1-A nalysis Batch: 148221 Lab Sample ID 720-53093-20	B-3-2.0 B-3-2.0 Lab Control Sample Lab Control Sample Dup Method Blank	Total/NA Total/NA Total/NA Total/NA Total/NA <b>Prep Type</b>	Solid Solid Solid Solid Solid	7471A 7471A 7471A 7471A 7471A Method	148172 148172 148172 148172 148172 148172 
720-53093-6 MSD LCS 720-148172/2-A LCSD 720-148172/3-A MB 720-148172/1-A <b>nalysis Batch: 14822</b> Lab Sample ID 720-53093-20 720-53093-22	B-3-2.0 B-3-2.0 Lab Control Sample Lab Control Sample Dup Method Blank 1 Client Sample ID B-10-2.0	Total/NA Total/NA Total/NA Total/NA Total/NA <b>Prep Type</b> Total/NA	Solid Solid Solid Solid Solid <b>Matrix</b> Solid	7471A 7471A 7471A 7471A 7471A 7471A <b>Method</b> 6010B	148172 148172 148172 148172 148172 148172  
720-53093-6 MSD LCS 720-148172/2-A LCSD 720-148172/3-A MB 720-148172/1-A malysis Batch: 148224	B-3-2.0 B-3-2.0 Lab Control Sample Lab Control Sample Dup Method Blank 1 Client Sample ID B-10-2.0 B-11-2.0	Total/NA Total/NA Total/NA Total/NA Total/NA <b>Prep Type</b> Total/NA Total/NA	Solid Solid Solid Solid Solid Solid Solid Solid	7471A 7471A 7471A 7471A 7471A 7471A <b>Method</b> 6010B 6010B	148172 148172 148172 148172 148172

### **General Chemistry**

Method Blank

### Prep Batch: 212558

MB 720-148154/1-A

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-23	B-12-1.0	Total/NA	Solid	3060A	
LCS 500-212558/2-A	Lab Control Sample	Total/NA	Solid	3060A	
LCS 500-212558/3-A	Lab Control Sample	Total/NA	Solid	3060A	
MB 500-212558/1-A	Method Blank	Total/NA	Solid	3060A	

Total/NA

Solid

6010B

### Analysis Batch: 212685

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
720-53093-23	B-12-1.0	Total/NA	Solid	7196A	212558
LCS 500-212558/2-A	Lab Control Sample	Total/NA	Solid	7196A	212558
LCS 500-212558/3-A	Lab Control Sample	Total/NA	Solid	7196A	212558
MB 500-212558/1-A	Method Blank	Total/NA	Solid	7196A	212558

148154

Dilution

Factor

1

Run

Batch

Number

148172

148197

Prepared

or Analyzed

11/12/13 12:51

11/12/13 16:51

Analyst

JCR

SLK

Lab

TAL PLS

TAL PLS

Batch

Туре

Prep

Analysis

Batch

Method

7471A

7471A

### Lab Sample ID: 720-53093-6 Matrix: Solid

5
8
9

Matrix: Solid

Matrix: Solid

### ___ <mark>Lab</mark>_____ TAL PLS

Lab Sample ID: 720-53093-20

### Lab Sample ID: 720-53093-22 Matrix: Solid

Lab Sample ID: 720-53093-23

id

Date Collected: 10/16/13 07:55 Date Received: 10/16/13 17:10

Client Sample ID: B-10-2.0

Client Sample ID: B-3-2.0

Date Collected: 10/16/13 10:10

Date Received: 10/16/13 17:10

Prep Type

Total/NA

Total/NA

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			148154	11/12/13 09:45	JCR	TAL PLS
Total/NA	Analysis	6010B		4	148221	11/13/13 01:32	SLK	TAL PLS

### Client Sample ID: B-11-2.0 Date Collected: 10/16/13 08:10

### Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			148154	11/12/13 09:45	JCR	TAL PLS
Total/NA	Analysis	6010B		4	148221	11/13/13 01:36	SLK	TAL PLS

### Client Sample ID: B-12-1.0 Date Collected: 10/16/13 08:20 Date Received: 10/16/13 17:10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			212558	11/19/13 11:00	JLE	TAL CHI
Total/NA	Analysis	7196A		2	212685		JLE	TAL CHI
					(Start)	11/19/13 15:59		
					(End)	11/19/13 16:00		

### Client Sample ID: B-12-2.0 Date Collected: 10/16/13 08:25 Date Received: 10/16/13 17:10

Lab Sample ID: 720-53093-24 Matrix: Solid

Γ		Batch	Batch		Dilution	Batch	Prepared		
	Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
:	Total/NA	Prep	3050B			148154	11/12/13 09:45	JCR	TAL PLS
Ŀ	Total/NA	Analysis	6010B		4	148221	11/13/13 01:41	SLK	TAL PLS

### Laboratory References:

TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

# 1 2 3 4 5 6 7 8 9 9

Laboratory: TestAmerica Pleasanton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	State Program	9	2496	01-31-14

### Laboratory: TestAmerica Chicago

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alabama	State Program	4	40461	04-30-14
California	NELAP	9	01132CA	04-30-14
Georgia	State Program	4	N/A	04-30-14
Hawaii	State Program	9	N/A	04-30-14
Illinois	NELAP	5	100201	04-30-14
Indiana	State Program	5	C-IL-02	04-30-14
lowa	State Program	7	82	05-01-14
Kansas	NELAP	7	E-10161	10-31-14 *
Kentucky	State Program	4	90023	12-31-13
Kentucky (UST)	State Program	4	66	04-30-14
Louisiana	NELAP	6	30720	06-30-14
Massachusetts	State Program	1	M-IL035	06-30-14
Mississippi	State Program	4	N/A	04-30-14
North Carolina DENR	State Program	4	291	12-31-13
North Dakota	State Program	8	R-194	04-30-14
Oklahoma	State Program	6	8908	08-31-14
South Carolina	State Program	4	77001	04-30-14
Texas	NELAP	6	T104704252-09-TX	02-28-14
USDA	Federal		P330-12-00038	02-06-15
Wisconsin	State Program	5	999580010	08-31-14
Wyoming	State Program	8	8TMS-Q	04-30-14

* Expired certification is currently pending renewal and is considered valid.

### Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL PLS
7471A	Mercury (CVAA)	SW846	TAL PLS
7196A	Chromium, Hexavalent	SW846	TAL CHI

### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

- TAL CHI = TestAmerica Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200
- TAL PLS = TestAmerica Pleasanton, 1220 Quarry Lane, Pleasanton, CA 94566, TEL (925)484-1919

### Sample Summary

TestAmerica Job ID: 720-53093-4

### Client: Vista Environmental Consulting, Inc Project/Site: Boston/Hampton Road Sites

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
720-53093-6	B-3-2.0	Solid	10/16/13 10:10	10/16/13 17:10
720-53093-20	B-10-2.0	Solid	10/16/13 07:55	10/16/13 17:10
720-53093-22	B-11-2.0	Solid	10/16/13 08:10	10/16/13 17:10
720-53093-23	B-12-1.0	Solid	10/16/13 08:20	10/16/13 17:10
720-53093-24	B-12-2.0	Solid	10/16/13 08:25	10/16/13 17:10

### Sharma, Dimple

170-53093-4

From: Jeff Austin [jeff@vista-env.com]

Sent: Monday, November 11, 2013 3:31 PM

To: Sharma, Dimple

Subject: Fw: Fwd: Updated Table for Hampton/Boston

Dimple,

More requested analyticals for the Boston/Hampton Road site in Hayward. See email below for specific request. please confirm receipt of this email. thank you!!

Jeff Austin Senior Project Manager Vista Environmental cell: (415) 218-0027 email: jeff@vista-env.com

B-12-1.0 for Cr⁶

B-10-2.0 for As, Pb B-11-2.0 for As, Pb B-12-2.0 for As, Pb, Ba, Cr

I'm not adverse to running the full RCRA 8 metal scan on the 3 2.0' samples if you think there is any value to that. I believe we are already having B-10-2.0 and B-12-2.0 run for pesticides.

### Rod Freitag, Environmental Program Manager

Alameda County General Services Agency, TSD 1401 Lakeside Drive, Rm. 1115, Oakland, CA 94612 Ph (510) 208-9522 | Fax (510) 208-9530 | QIC 26023

Please consider the environment before printing this email.

From: Chuck Bove [mailto:chuckbove@vista-env.com] Sent: Thursday, November 07, 2013 2:42 PM To: Freitag, Rod, GSA-Technical Services Department Subject: FW: Updated Table for Hampton/Boston



Rod:

Attached please find the updated Hampton/Boston table. Please let me know if you have any questions.

Best Regards Chuck Client: Vista Environmental Consulting, Inc

### Login Number: 53093 List Number: 1

Creator: Mullen, Joan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 720-53093-4

List Source: TestAmerica Pleasanton

Client: Vista Environmental Consulting, Inc

### Login Number: 53093 List Number: 1 Creator: Kelsey, Shawn M

Question	Answer Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	True
The cooler's custody seal, if present, is intact.	True
Sample custody seals, if present, are intact.	True
The cooler or samples do not appear to have been compromised or tampered with.	True
Samples were received on ice.	True
Cooler Temperature is acceptable.	True
Cooler Temperature is recorded.	True
COC is present.	True
COC is filled out in ink and legible.	True
COC is filled out with all pertinent information.	True
Is the Field Sampler's name present on COC?	True
There are no discrepancies between the containers received and the COC.	True
Samples are received within Holding Time.	True
Sample containers have legible labels.	True
Containers are not broken or leaking.	True
Sample collection date/times are provided.	True
Appropriate sample containers are used.	True
Sample bottles are completely filled.	True
Sample Preservation Verified.	True
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True
Multiphasic samples are not present.	True
Samples do not require splitting or compositing.	True
Residual Chlorine Checked.	True

14

Job Number: 720-53093-4

List Source: TestAmerica Chicago

List Creation: 10/18/13 11:16 AM

# Bulk Asbestos Analysis (EPA Method 600/R-93-116, Visual Area Estimation)

Vista Environmental Consultants Chris Burns 2984 Teagarden St. San Leandro, CA 94577					Client ID: Report Numbe Date Received Date Analyzed Date Printed: First Reported	<b>10/10/1</b> <b>1:</b> 10/11/1 10/11/1	13 13 13
<b>Job ID/Site:</b> 1306230 - County of Alama	eda GSA, 278	B Hampton Road	, Hayward		FALI Job ID: Total Samples		10
<b>Date(s) Collected:</b> 10/10/2013					Total Samples		10
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
<b>278-131010-HA01-01</b> Layer: Brown Soil	11436742		ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-131010-HA01-02</b> Layer: Brown Soil	11436743		ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-131010-HA01-03</b> Layer: Brown Soil	11436744		ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-131010-HA01-04</b> Layer: Brown Soil	11436745		ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-131010-HA01-05</b> Layer: Brown Soil	11436746		ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-131010-HA01-06</b> Layer: Brown Soil	11436747		ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-131010-HA01-07</b> Layer: Brown Soil	11436748		ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-131010-HA01-08</b> Layer: Brown Soil	11436749		ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents:	Asbestos (ND)					

Client Name: Vista Environmen		Report Number:         B182971           Date Printed:         10/11/13					
Sample ID	Lab Number	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
<b>278-131010-HA01-09</b> Layer: Brown Soil	11436750		ND				
Total Composite Values of Fib Cellulose (Trace)	rous Components: As	sbestos (ND)					
<b>278-131010-HA01-10</b> Layer: Brown Soil	11436751		ND				
Total Composite Values of Fib Cellulose (Trace)	rous Components: As	sbestos (ND)					

Lad Shower

Tad Thrower, Laboratory Supervisor, Hayward Laboratory

Note: Limit of Quantification ('LOQ') = 1%. 'Trace' denotes the presence of asbestos below the LOQ. 'ND' = 'None Detected'. Analytical results and reports are generated by Forensic Analytical Laboratories Inc. (FALI) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by FALI to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by FALI. The client is solely responsible for the use and interpretation of test results and reports requested from FALI. Forensic Analytical Laboratories Inc. is not able to assess the degree of hazard resulting from materials analyzed. FALI reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. All samples were received in acceptable condition unless otherwise noted.



Forensic Analytical Laboratories, Inc.

Analysis Request Form (COC)

Client Name & Address:			P	PO/Job#: 1306230 Date: 10/10/13					13	
Vista Environmental Cor 2984 Teagarden Street	isulting, li	10.	T	urn Around Tin	ne: Same	Day / 1Day	/ 2Xv	/ 3Day / 4	Day / 5Day	
San Leandro, CA 94577				C PCM: C NIOSH 7400A / NIOSH 7400B C Rotometer						
			( <b>8</b>	2 PLM: Standard / D Point Count 400 1000 / D CARB 435						
Contact: Chris Burns			12	□ TEM Air: □ AHERA / □ Yamate2 / □ NIOSH 7402 □ TEM Bulk: □ Quantitative / □ Qualitative / □ Chatfield						
Phone: (510) 346-8860	Fax;	(888) 296-0271		I TEM Water: 1 I TEM Microva					5756(str/mass)	
E-mail: chrisburns@vista-	env.com	& molli@vista-env.co		Image: Interpretent interp						
Site: County of Alameda C	<b>S</b> SA		- I	D Metals Analysis: Method:						
Site Location: 278 Hampto	n Road H	lavward		Matrix:						
Comments:		Analytes:		Report Via	1!		•			
					١			🗷 E-Mail	🗇 Verbal`	
Como lo 1D	Date /	<b>6</b>		<b>ttt</b>		FOR AIR \$A	MPLES ON	NLY	Sample Area /	
Sample ID	Time	Sample Locatio	, Dest		Туре	Time On/Off	Avg. LPM	Total Time	Air Volume	
278-131010-HA01-01	10/10/13 +	Soil - North Pad, South S	Side			····	-			
278-131010-HA01-02	10/10/13	Soil - North Pad, East Si	Soil - North Pad, East Side							
278-131010-HA01-03	10/10/13	Soil - North Pad, North S	Soil - North Pad, North Side							
278-131010-HA01-04	10/10/13	Soil - North Pad, West S	Soil - North Pad, West Side				-			
278-131010-HA01-05	10/10/13	Soil - South Pad, South Side								
278-131010-HA01-06	10/10/13	Soil - South Pad, East S	ide						•	
278-131010-HA01-07	10/10/13	Soil - South Pad, North S	Side							
278-131010-HA01-08	10/10/13	Soil - East Debris Pile, S	South							
278-131010-HA01-09	10/10/13	Soil - East Debris Pile, M	liddle	· · · · · · · · · · · · · · · · · · ·	ान् ।		-			
278-131010-HA01-10	10/10/13	Soil - East Debris Pile, N	lorth							
Sampled By: Chris Burns			Date: 1	0/10/13	1 19	 Time: 0801				
	DHL 🖸	UPS 📁 US Mail	Courie		Off 🗖	Other:				
Relinquished By:	<u>}</u>	Relinquished By:		··· ·	 T	Relinquished	By:			
Date / Ume:	2.28	Date / Time;				Date / Time:	-			
Received By:	<u>1:00</u> 11	Received By:				Received By:				
Date/Time: 10/10/13, 2:	alt 45m	Date / Time:				Date / Time:				
Condition Acceptable? [2] Yes		Condition Accepta	able? 🗇 Yo	es 🖸 No	ļ	Condition Ac	ceptable?	🖸 Yes	D No	

San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph: (510)887-8828 * (800)827-3274 / Fax: (510)887-4218 Los Angeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 90221 / Ph: (310)763-2374 * (888)813-9417 / Fax: (310)763-4450 Las Vegas Office: 6765 S. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030

<del>ب</del>ات

## Bulk Asbestos Analysis

(EPA Method 600/R-93-116, Visual Area Estimation)

Vista Environmental Consultants Chris Burns 2984 Teagarden St. San Leandro, CA 94577					Client ID: Report Numb Date Receive Date Analyze Date Printed First Reporte	d: 10/16/ d: 10/18/ : 10/18/	65 13 13 13
Job ID/Site: 1306225 - Cherryland	d Community Center	r, 17482 Boston	Rd., Hayward	l, CA	FALI Job ID Total Sample		: 4
<b>Date(s) Collected:</b> 10/16/2013		Total Sample		4			
Sample ID	Lab Number	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
<b>17482-101613-HA01-01</b> Layer: Brown Soil	11438977		ND				
Total Composite Values of Fibrou Cellulose (Trace)	s Components:	Asbestos (ND)					
<b>17482-101613-HA01-02</b> Layer: Brown Soil	11438978		ND				
Total Composite Values of Fibrou Cellulose (Trace)	s Components:	Asbestos (ND)					
<b>17482-101613-HA01-03</b> Layer: Brown Soil	11438979		ND				
Total Composite Values of Fibrou Cellulose (Trace)	s Components:	Asbestos (ND)					
<b>17482-101613-HA01-04</b> Layer: Brown Soil	11438980		ND				
Total Composite Values of Fibrou Cellulose (Trace)	s Components:	Asbestos (ND)					

Lad Shrower

Tad Thrower, Laboratory Supervisor, Hayward Laboratory

Note: Limit of Quantification ('LOQ') = 1%. 'Trace' denotes the presence of asbestos below the LOQ. 'ND' = 'None Detected'. Analytical results and reports are generated by Forensic Analytical Laboratories Inc. (FALI) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by FALI to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by FALI. The client is solely responsible for the use and interpretation of test results and reports requested from FALI. Forensic Analytical Laboratories Inc. is not able to assess the degree of hazard resulting from materials analyzed. FALI reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. All samples were received in acceptable condition unless otherwise noted. Forensic Analytical Laboratories, Inc.

Analysis Request Form (COC)

Client Name & Address:		······································	PO/Job#: 130	6225		Da	ate: 10/1	10/12	
Vista Environmental Consult 2984 Teagarden Street	ting, Inc.		Turn Around Tim		Day / 1Day				
San Leandro, CA 94577				•		$\rightarrow \sim$	D Rotor	· · · · · ·	
			👮 PLM: 🗭 Stand						
Contact: Chris Burns			☐ TEM Air: ☐ AHERA / ☐ Yamate2 / ☐ NIOSH 7402 ☐ TEM Bulk: ☐ Quantitative / ☐ Qualitative / ☐ Chatfield						
Phone: (510) 346-8860	Fax: (88	88) 296-0271	D TEM Baix, D D TEM Water, D D TEM Microvac	1 Potable	: / 🖾 Non-Po	table / )	⊐ Weight %		
E-mail: chrisburns@vista-env.	.com & m	iolli@vista-env.com	[□] IAQ Particle Identification (PLM LAB)       [□] PLM Opaques/Soot         [□] Particle Identification (TEM LAB)       [□] Special Project						
Site: Cherryland Community (	Center		D Metals Analysis: Method:						
Site   ocation:			Matrix:						
Comments:	а., науw 		Analytes:						
Comments:				۱,	Report Via	r Fax	E-Mail	🖸 Verbal	
Di Di	ate /	frank in the			FOR AIR SAM	MPLES O	NLY	Sample Area /	
	ime	Sample Location / D		Туре	Time On/Off	Avg. LPM	Total Time	Air Volume	
17482-101613-HA01-01	د <u>م 13 (م</u> من	NT COMPOSITE SA NORKNRATH PRIPI			$\overline{\nabla}$		1		
		PRUL DEIPLINE					•   1		
17482-101613-HAD1-02	- I ·	T COMPOSITE				~ ~			
17482-101613-HACI-03		SORE DELPLING	RAST_)	-rc-		<u> </u>			
17482-101613-14001-04		CT COMPOSITES		$\geq$			(		
		· · ·		지 역] 51					
	1		R	AI P D					
	7 -	SAMPC	25	IA					
						1			
				지 의 역 이				<b>.</b>	
		•		지 역 [ ]					
Sampled By: LUIS J.			10/10/13		Time: 9;	30		· · · · ·	
Shipped Via: D Fed Ex D DHL D UPS D US Mail D Courier D Drop Off D Other:									
Relliquished by: Date Time:	ha	Relinquished By: Date / Time:		Ì	Relinquished . Date / Time:	By:			
Received By:	0,	Received By:		1	Received By:		-		
Date / Time: 10-10-13 (?) !	:250	Date / Time:			Date / Time:		-		
Condition Acceptable? DYes D		Condition Acceptable?	Yes 🖸 No		Condition Acc	eptable?	ار آتا Yes کر ا	⊐ No	

L San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph: (510)887-8828 * (800)827-3274 / Fax: (510)887-4218 Los Angeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 90221 / Ph: (310)763-2374 * (888)813-9417 / Fax: (310)763-4450 Las Vegas Office: 6765 S. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030



# Metals Analysis of Soils

Vista Environmental Con Project Manager 2984 Teagarden St. San Leandro, CA 94577		Date 1 Date 2 Date 1 First 1	Analyzed:     10/10/13       Printed:     10/14/13       Reported:     10/14/13			
Job ID / Site: 1306230, 0 Date(s) Collected: 10/10	•	A, 278 Hampton	Road, Hayv	vard	Total	Job ID: L1161 Samples Submitted: 10 Samples Analyzed: 10
Sample Number	Lab Number	Analyte	Result	Result Units	Reporting Limit*	Method Reference
278-131010-НА02-01	30661603	Pb	490	mg/kg	40	EPA 3050B/7420
278-131010-HA02-02	30661604	Pb	350	mg/kg	30	EPA 3050B/7420
278-131010-НА02-03	30661605	Pb	210	mg/kg	20	EPA 3050B/7420
278-131010-HA02-04	30661606	Pb	710	mg/kg	40	EPA 3050B/7420
278-131010-HA02-05	30661607	Pb	1500	mg/kg	60	EPA 3050B/7420
278-131010-НА02-06	30661608	Pb	1800	mg/kg	200	EPA 3050B/7420
278-131010-НА02-07	30661609	Pb	1100	mg/kg	70	EPA 3050B/7420
278-131010-HA02-08	30661610	Pb	330	mg/kg	20	EPA 3050B/7420
278-131010-HA02-09	30661611	Pb	270	mg/kg	20	EPA 3050B/7420
278-131010-HA02-10	30661612	Pb	1100	mg/kg	70	EPA 3050B/7420

* The Reporting Limit represents the lowest amount of analyte that the laboratory can confidently detect in the sample, and is not a regulatory level. The Units for the Reporting Limit are the same as the Units for the Final Results.

amele Sile

Daniele Siu, Laboratory Supervisor, Hayward Laboratory

Analytical results and reports are generated by Forensic Analytical at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by Forensic Analytical to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by Forensic Analytical. The client is solely responsible for the use and interpretation of test results and reports requested from Forensic Analytical. Forensic Analytical is not able to assess the degree of hazard resulting from materials analyzed. Forensic Analytical reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. Any modifications that have been made to referenced test methods are documented in Forensic Analytical's Standard Operating Procedures Manual. Sample results have not been blank corrected. Quality control and sample receipt condition were acceptable unless otherwise noted.



### Forensic Analytical Laboratories, Inc.

Analysis Request Form (COC)

Client Name & Address: Vista Environmental Cor	nsultina t		PO/Job#: 1306230 Date: 10/10/13							
2984 Teagarden Street	iounary, -	RJ.	Turn Around Tim	ie: Same	Day / 1Day	/ 2 <b>) (</b> v	/ 3Day / 4	Day / 5Day		
San Leandro, CA 94577			🗇 PCM: 🗇 NIOSH 7400A / 🛱 NIOSH 74008 🏾 🛱 Rotometer							
			🗇 PLM: 🗇 Standard / 🛱 Point Count 400 - 1000 / 🛱 CARB 435							
Contact: Chris Burns	<u></u>	····	TEM Air: TA	Quantital	tive / 🎵 Qua	litative /	<b>, 1</b> Chatfield			
^{Phone:} (510) 346-8860	Fax:	(888) 296-0271			table / 🗇 Non-Potable / 🛱 Weight % Qual(+/-) / 🛱 D5755(str/area) / 🗗 D5756(str/mass)					
E-mail: chrisbums@vista-	env.com	& molli@vista-env.com	Image: IAQ Particle identification (PLM LAB)       Image: PLM Opaques/Soot         Image:							
Site: County of Alameda C	GSA		Metals Analysis: Method: Flame AA							
Site Location: 278 Hampton	in Road F	Hawward	- Matrix: Soil Analytes: Pb							
Comments:			Antarytes, PD	1	Report Via		<u></u>			
Commence.							🛿 E-Mail	🗖 Verbal		
	Date/				FOR AIR SAM	Sample Area /				
Sample ID	Time	Sample Location / D	escription	Туре	Time On/Off	Avg. LPM	Total Time	Air Volume		
278-131010-HA02-01	10/10/13	Soil - North Pad, South Side						,		
276-131010-HA02-02	10/10/13	Soil - North Pad, East Side	้วาไ							
278-131010-HA02-03	10/10/13	Soil - North Pad, North Side	Soil - North Pad, North Side							
278-131010-HA02-04	10/10/13	Soil - North Pad, West Side	A P C							
278-131010-HA02-05	10/10/13	Soil - South Pad, South Side								
278-131010-HA02-06	10/10/13	Soil - South Pad, East Side		A 9 01						
278-131010-HA02-07	10/10/13	Soil - South Pad, North Side		지 역 3						
278-131010-HA02-08	10/10/13	Soil - East Debris Pile, South			·					
278-131010-HA02-09	10/10/13	Soil - East Debris Pile, Middle		지 역] 기						
278-131010-HA02-10	10/10/13	Soil - East Debris Pile, North		A 9 10						
Sampled By: Chris Burns	<u></u>	Date	10/10/13	<u>i -</u>	Time: 0800	)		<b>"ł</b>		
Shipped Via: D fed Ex	DHL 🖾	I UPS 🗇 US Mail 🗇 Co	ourier 🛛 🖾 Drop (	Off 🗖	Other:					
		Relinquished By:		· · · · · ·	Relinquished	Ву:		<u> </u>		
Date / Time: 1040112	2.3	Date / Time:			Date / Time:					
Received By:	dl	Received By:			Received By:					
Date / Times	2:45.	Date / Time:			Date / Time:					
Condition Acceptable? 12 Yes	□ No	Condition Acceptable?	🗂 Yes 📁 No		Condition Act	ceptable?	T Yes	D No		

San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph: (510)887 8828 * (800)827-3274 / Fax: (510)887-4218 Los Angeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 90221 / Ph: (310)763-2374 * (888)813 9417 / Fax: (310)763-4450 Las Vegas Office: 6765 S. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030



# Metals Analysis of Soils

Vista Environmental Cons Project Manager 2984 Teagarden St. San Leandro, CA 94577	L1161 M143830 10/16/13 10/18/13 10/18/13 10/18/13										
Job ID / Site: 1306225, Cherryland Community Center, 17482 Boston Rd., Hayward, Ca Date(s) Collected: 10/6/13 FALI Job ID: L1161 Total Samples Submitted: 4 Total Samples Analyzed: 4											
Sample Number	Lab Number	Analyte	Result	Result Units	Reporting Limit*		lethod ference				
17482-101613-HA02-01	30662072	Pb	200	mg/kg	20	EPA 3	050B/7420				
17482-101613-HA02-02	30662073	Pb	1800	mg/kg	200	EPA 3	050B/7420				
17482-101613-HA02-03	30662074	Pb	370	mg/kg	20	EPA 3	050B/7420				
17482-101613-HA02-04	30662075	Pb	70	mg/kg	6	EPA 3	050B/7420				

* The Reporting Limit represents the lowest amount of analyte that the laboratory can confidently detect in the sample, and is not a regulatory level. The Units for the Reporting Limit are the same as the Units for the Final Results.

amele Sile

Daniele Siu, Laboratory Supervisor, Hayward Laboratory

Analytical results and reports are generated by Forensic Analytical at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by Forensic Analytical to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by Forensic Analytical. The client is solely responsible for the use and interpretation of test results and reports requested from Forensic Analytical. Forensic Analytical is not able to assess the degree of hazard resulting from materials analyzed. Forensic Analytical reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. Any modifications that have been made to referenced test methods are documented in Forensic Analytical's Standard Operating Procedures Manual. Sample results have not been blank corrected. Quality control and sample receipt condition were acceptable unless otherwise noted.

	Forensic	Analy	tical	Labora	tories,	Inc.
--	----------	-------	-------	--------	---------	------

Analysis Request Form (COC)

-

Client Name & Address:						PO/Job#: 1306225 Date: 10/16/13						
Vista Environmental Cor 2984 Teagarden Street	sult	ing, li	nç.			Turn Around Tim	e: Same	Day / 1Day	1-21			
San Leandro, CA 94577						D PCM: D NIO	•••••••			T Rotor		
						🗇 PLM: 🗇 Stand	lard / 🗖	Point Count 4	100 - 100	0 / ČI CARF	1 435	
Contact: Chris Burns						🗇 TEM Air: 🗇 A 🗇 TEM Bulk: 🗇	Quantitat	live / 🗖 Qua	litative /	D Chatfield	1	
Phone: (510) 346-8860		Fax:	(888) 29	96-0271		TEM Water: E					756(str/mass)	
E-mail: chrisburns@vista-	env.	com	& molli@	vista-env.	.com	IAQ Particle Identification (PLM LAB)     PLM Opaques/Sool     Particle Identification (TEM LAB)     Special Project						
Site: Cherryland Commun	ity C	Cente	r			🚆 Metals Analysi	s: Metho	^{xd:} FLAN	12A	4		
Site Location: 17482 Bosto				CA		Analytes: L			·· ·	•		
Comments:						<u>_</u>		Report Via	:			
	1					tu.	T		Fax 👔	R E-Mail	🖸 Verbal	
Sample ID		ile /	Sai	mple Loca	tion / D	escription		FOR AIR SAA	. 1		Sample Area /	
·		me					Туре	Time On/Off	Avg. EPM	Total Time	Air Volume	
17482-101613-1402-01	19/1	19/3				WEST).	A C				1	
174162-101613+4402-02			CALCO LANDRA	L ORP	てんち	(BOUTH)	A FC				,	
11102 0.019 1			EXT CO	smoos	TTL 5	ampik	A A			//	····· ·	
17482-10613-1402-03			WORR	DHPL		LAST)	A TO				/	
17482-10163-11402-04			1000 FL	2 DELP	whit	NOKTH)	×c.					
							A IP				· · · · · · · · · · · · · · · · · · ·	
							A C					
			4 4	Am	PCA	25	P C					
			1 -				A P					
					<u></u>		A P	····				
							Р А					
							P C					
							P C					
Sampled By: LUIS J.	$\frac{1}{\mathcal{R}^{\prime}}$	001	4A		Date:	10/11/1z	i .	Time: /	0:0	20		
	DHL			) US Mail	T Cot		)HF 🖸	Other:				
Relinquished By: Relinquished By: Relinquished By:								<u> </u>				
Date / Time		$\sim$		e / Time:			ł	Date / Time:				
Received By:	Ğ	7	Rec	eived By:				Received By:				
Date / Time: 10-16-13	~~	11:2=	2	e / Time:				Dale / Time:				
Condition Acceptable?	ī.	No	Cor	dition Acce	ptable? 🗖	Yes 🖸 No		Condition Acc	eptable?	🖸 Yes 🛛 🗎	🗇 No	

San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph: (510)887-8828 * (800)827-3274 / Fax: (510)887-4218 Los Aogeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 90221 / Ph: (310)763-2374 * (888)813-9417 / Fax: (310)763-4450 Fas Vegas Office: 6765 S. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030


#### HAZARDOUS MATERIAL SURVEY REPORT CHERRYLAND COMMUNITY CENTER PROJECT 17482 BOSTON ROAD & 278 HAMPTON ROAD, HAYWARD, CALIFORNIA



**PREPARED FOR:** 



General Services Agency of Alameda County- TSD 1401 Lakeside Drive Oakland, CA 94612

#### **PREPARED BY:**

Vista Environmental Consulting, Inc. 2984 Teagarden Street San Leandro, CA 94577

September 12, 2013

Project No. 1306225

# TABLE OF CONTENTS

# 1. INTRODUCTION

- 1.1. Purpose and Objective
- 1.2. Team Members/Survey Dates
- 1.3. Building Description

#### 2. FINDINGS

- 2.1. Asbestos-Containing Homogeneous Areas
- 2.2. Non-Asbestos Homogeneous Areas
- 2.3. Lead Paint Sampling Results
- 2.4. Other Hazardous Materials

#### 3. SURVEY PROTOCOL

- 3.1. Field/Analytical Protocol
- 3.2. Limitations

#### APPENDICES

Appendix A	<b>Bulk Sample Analytical Results</b>
Appendix B	Laboratory Reports/Chain-of-Custody Forms
Appendix C	Survey Team Certifications
Appendix D	Floor Plans/Drawings

### 1.0 INTRODUCTION

#### 1.1 Purpose and Objective

The purpose of this survey was to identify hazardous building materials that will be impacted by upcoming demolition activities for the Cherryland Community Center Project located at 17482 Boston Road and 278 Hampton Road, Hayward, CA. The data provided in this report can assist all parties involved in this project to make informed decisions with regard to regulatory compliance and the health and safety of their employees. This survey included the following:

- Visible and accessible suspect asbestos-containing construction materials (ACCM) were assessed and sampled to determine asbestos content.
- Representative painted and coated building components were assessed and sampled for lead content.
- Visible and accessible materials commonly found in buildings which potentially have hazardous properties that are regulated were assessed, but not sampled. These materials include, but are not limited to:
  - Universal Waste (UW) materials, such as non-incandescent lamps, batteries, and mercury-containing devices;
  - Polychlorinated biphenyls (PCBs) containing devices such as lamp ballasts;
  - Low-level radioactive sourced devices such as smoke detector;

#### 1.2 Team Members/Survey Dates

VEC performed the hazardous materials survey on August 24, 2013. The asbestos survey was performed by Christopher Burns a State of California Division of Occupational Safety and Health (Cal/OSHA) Certified Asbestos Consultant (#92-0224) and assisted by Javier Rocha, a Cal/OSHA Certified Site Surveillance Technician (#02-3244). The lead paint sampling was performed by Christopher Burns, who has a Lead-Related Construction Certificate (#I-663) as an Inspector/Assessor issued by the State of California Department of Public Health (CDPH) and assisted by Javier Rocha, a CDPH Certified Lead Sampling Technician (#19869).



# 1.3 Building Descriptions

# <u>17482 Boston Road</u>

This building is an approximately 3,200 square foot, two story house built in 1946 and renovated at unknown dates. The building has wood framing, subflooring and exterior walls, and an asphalt shingle and composite roof. The garage and east section sit on a concrete foundation. Interior finishes include, but are not limited to, wallboard and joint compound with texture coating walls and ceilings, hardwood and ceramic tile floors.

## 278 Hampton Road

The site consists of an asphalt driveway and concrete foundations of a former dwelling and barn. Previous site structures consisted of a residence, garage, shop, and two barn-like structures. These were not present at the time of this survey.

# 2.0 FINDINGS

## 2.1 Asbestos-Containing Homogeneous Areas

17482 Boston Road

The results of the bulk samples collected for asbestos, and analyzed by Polarized Light Microscopy (PLM), indicate that detectable concentrations of asbestos are present in the following materials:

Homogeneous Area	Material Description	Material Location	Quantity
HA 01	Wallboard, White/Joint Compound, White with Texture Coat	Throughout Except Garage, Walls and Ceilings (Debris in Bathroom 4 & 5, Bedroom 6, and adjacent Hallway)	11,000 SF
HA 02	Texture Coat, White, Small	Throughout on HA01 Except Garage, Walls and Ceilings (Debris in Bathroom 4 & 5, Bedroom 6, and adjacent Hallway)	11,000 SF
HA 06	Mastic, Black, Sink, Undercoating	Kitchen	10 SF
HA 08	Wallboard, White/Joint Compound, White, with Texture Coat	Garage - Walls & Ceiling	2,000 SF
HA 09	Texture Coat, White, Large	Garage - Walls & Ceiling	2,000 SF
HA 10	Insulation, Gray, Duct	Heater Closet and Attic Space on Duct and Registers	75 SF



# Cherryland Community Center Project, Hayward Hazardous Materials Survey Report

September 12, 2013 Project No. 1306225

Homogeneous Area	Material Description	Material Location	Quantity
HA13	Tape, White, Duct Seam	Attic, Wall Void and Crawlspace on Duct Seams	$50~\mathrm{SF}$
HA 14	Vinyl Sheet Flooring, Beige, Pebble Pattern, Remnants/Backing	1st Floor East Closet on Rolls on Ground	60 SF
HA 27	Mastic, Gray, Black/Silver Roof	Roof - Patches, Penetrations & Seams	$40~\mathrm{SF}$
HA 30	Sealant, White, Exterior Wall Seams	Exterior - Walls around Garage & Second Floor	3 SF (36 LF)
HA 48	Mastic, Black, Exterior Seam	Exterior South East Where Garage Attaches to House	3 SF

Assumed asbestos-containing materials that were not sampled during this survey are as follows:

Homogeneous Area	Material Description	Material Location	Quantity
HA 15	Vinyl Floor Tile, 9" Green, Flexachrome, in Box	Kitchen Counter	$5 \mathrm{SF}$

## 278 Hampton Road

No asbestos was detected in the 4 samples collected and analyzed. Mounded soil and apparent demolition debris surround the concrete foundations at the central portion of the site and may occur throughout the site. These materials may contain asbestos and should be sampled prior to disturbance.

Historically utility companies in the Bay Area used asbestos-containing cement piping for water supply. This type of subsurface piping may be present throughout the Project Site.

#### 2.2 Non-Asbestos Homogeneous Areas

#### 17482 Boston Road

The results of the bulk samples collected for asbestos, and analyzed by PLM, indicate that detectable concentrations of asbestos *are not present* in the following materials:

Homogeneous Area	Material Description	Material Location
HA 03	Insulation, Black & Brown, Wire	Throughout
HA 04	Acoustic Ceiling Tile, 12" White, Non- uniform Hole/Mastic	Bedroom 1
HA 05	Vapor Paper, Brown, Under Hardwood Floor	Living Room & Kitchen
HA 07	Mortar, White/Firebrick, Beige	Family Room - Fireplace
HA 11	Vapor Paper, Black, Wall	Throughout Perimeter Walls
HA 12	Insulation, Gray, Blown-In Attic	Attic
HA 16	Mortar, White/Backing Board, Gray, Floor	Kitchen, Bathroom 1 & 2
HA 17	Mastic, Yellow, Ceramic Floor	Hallway - Entry
HA 18	Mortar, White/Grout, Red, on Wood	Dining Room & Family Room
		VISTA ENVIRONMENTAL



# Cherryland Community Center Project, Hayward Hazardous Materials Survey Report

Homogeneous Area	Material Description	Material Location
HA 19	Leveling Compound, White	Bedroom 3
HA 20	Vapor Paper, Black, Floor	Hallway
HA 21	Mortar, White/Backing Board, Gray, 12" Ceramic Floor	Bathroom 4 & 5
HA 22	Paint, Beige, Exterior	Exterior
HA 23	Putty, White, Window	Windows
HA 24	Roofing, Black, Shingle	Roof
HA 25	Mastic, Brown, Baseboard	Bathroom 3
HA 26	Roofing, Black Sheet	Roof - South Central
HA 28	Sealant, Beige, Flashing	Roof - South Central
HA 29	Sealant, White, Window Frame, Wall Seams	Exterior Window Frames and Wall Seams
HA 31	Sealant, Off-White, Door Frame	Exterior of Garage - Door Frame
HA 49	Sealant, Tan, Exterior Patch	Exterior of House - North
HA 50	Concrete, Gray	Exterior Driveway & Walkway
HA 51	Roofing, Black & Green, Shingle	Attic - East

## 278 Hampton Road

The results of the bulk samples collected for asbestos, and analyzed by PLM, indicate that detectable concentrations of asbestos <u>are not present</u> in the following materials:

Homogeneous Area	Material Description	Material Location
HA 01	Paint, White/Concrete, Gray	North Concrete Pad
HA 02	Concrete, Gray	South Concrete Pad
HA 03	Asphalt, Black	Driveway

# 2.3 Lead Paint Sampling Results

#### 17482 Boston Road

The bulk sample results for this survey indicate that the following painted surfaces had lead concentrations above the analytical detection level:

Homogeneous Area	Material Description	Material Location	Lab Result	Quantity
HA 32	Paint, Beige, Drywall	Interior Walls	0.031 wt%	NA
HA 33	Paint, Green, Drywall	Interior Walls	0.006 wt%	NA
HA 34	Paint, White, Drywall	Interior Walls & Ceiling	0.008 wt%	NA
HA 35	Paint, White, Wood	Interior Baseboards	0.079 wt%	NA
HA 37	Beige, 15" Ceramic Floor	Entry, Dining Room, Closet, Family Room, Bathroom 1 & 2,	7 mg/kg	NA
HA 38	Beige, Pattern, 15" Ceramic Floor	Kitchen & Laundry	25  mg/kg	NA
HA 40	Paint, White, Wood	Exterior - Door & Door Frame	0.85 wt%	55 SF



Cherryland Community Center Project, Hayward Hazardous Materials Survey Report

Homogeneous Area	Material Description	Material Location	Lab Result	Quantity
HA 41	Paint, Beige, Wood	Exterior - Walls & Trim	0.49 wt%	$\mathbf{N}\mathbf{A}$
HA 42	Paint, Beige, Wood	Exterior - Windows	1.9 wt%	175 SF
HA 43	Paint, White, Wood	Exterior - Window Frame	0.11 wt %	NA
HA 44	Paint, White, Wood	Exterior of Garage Door and Door Frames	0.009 wt %	NA

#### 278 Hampton Road

The bulk sample results for this survey indicate that the following painted surfaces had lead concentrations above the analytical detection level:

Homogeneous Area	Material Description	Material Location	Lab Result	Quantity
HA 04	Paint, White	North Concrete Pad	0.018 wt%	$\mathbf{N}\mathbf{A}$

**Bold** = Paint containing greater than 5,000 ppm of lead or 0.5% lead by weight.

Mounded soil and apparent demolition debris surround the concrete foundations at the central portion of the site and may occur throughout the site. These materials may contain lead and should be sampled prior to disturbance.

Analytical results for other lead samples collected were below the analytical detection level.

#### 2.4 Other Hazardous Materials

#### 17482 Boston Road

Devices with potential hazardous materials were visually identified at the Project Site. They

are as follows:

Material	Contaminant	Quantity (EA)
Fluorescent Tubes (4' Length)	Universal Waste	12
Light Fixture Ballasts	Polychlorinated Biphenyls	6

#### 278 Hampton Road

No other suspect hazardous materials were identified.



## 3.0 SURVEY PROTOCOLS

#### 3.1 Field/Analytical Protocol

#### 3.1.1 Asbestos

The asbestos survey was performed generally in accordance with the AHERA protocol (40 CFR Part 763, Subpart E). Visual identification was performed by assessing visible and accessible structural, architectural, and mechanical components for the presence of suspect ACCM at the Project Site. Destructive sampling techniques were employed where appropriate.

This limited ACCM survey was conducted in the following manner:

- Suspect ACCM was categorized into homogeneous materials. A homogeneous material is defined as a surfacing material, thermal system insulation, or miscellaneous material which is uniform in color and texture. It may also be additionally subcategorized using the date of installation, when available.
- A sampling scheme was developed based upon the location and quantity of the suspect homogeneous ACCM. A rough order of magnitude estimate of each suspect homogenous ACCM was calculated and recorded for future reference. A sampling scheme, including a specific number of samples per suspect homogeneous ACCM, was calculated prior to sampling.
- Sampling guidelines established by the United States Environmental Protection Agency (USEPA) were utilized for sampling each suspected homogeneous ACCM. Methods described in Appendix K of 8 California Code of Regulation (CCR) 1529 were utilized in the collection of each suspect homogeneous ACCM sample.
- Trained California asbestos certified personnel, using appropriate sampling tools and sterile leak-tight Whirl-pak® containers, collected building materials that were suspected to contain ACCM.
- Each suspect ACCM sample was collected and sealed in its container and appropriately labeled with a unique sample identification number and recorded on an asbestos bulk sampling log. Each log contains a chain-of-custody to assure the proper transition of the samples from VEC to the analytical laboratory.
- Sampling tools were decontaminated between the collection of each suspect sample to prevent the possibility of cross contamination to subsequent suspect ACCM samples.



September 12, 2013 Project No. 1306225

The suspect ACCM samples were delivered, under proper chain-of-custody protocol, to Forensic Analytical Laboratories (FAL) in Hayward, California. FAL is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) and the California Environmental Laboratory Accreditation Program (Cal-ELAP). The samples were submitted for analysis by Polarized Light Microscopy (PLM) utilizing dispersion staining techniques in accordance with the EPA's "Method for the Determination of Asbestos in Bulk Building Materials" U.S. EPA/600/R-93/116, Visual Area Estimate, dated July 1993 and adopted by the NVLAP as Test Method Code 18/A01.

## 3.1.2 Lead Paint

This survey included a limited screening of paint and ceramic tile finishes for the purpose of characterizing the lead content in paint and coatings likely to be disturbed during demolition activities. Trained California lead certified personnel, using appropriate sampling tools and sterile leak-tight Whirl-pak® containers, collected painted finishes and ceramic tiles that were suspected to contain lead. Each sample container was labeled with unique sample identification. Sampling tools were decontaminated between the collection of each suspect sample to prevent the possibility of cross contamination.

The paint chip and ceramic tile samples were delivered, under proper chain-of-custody protocol, to FAL in Hayward, California. FAL is accredited under American Industrial Hygiene Association (AIHA), the Environmental Lead Laboratory Accreditation Program (ELLAP), and the California Department of Public Health Services (CDPH) for multiple metals analysis. The samples were prepared and analyzed by method EPA 3050B/7420, Flame Atomic Absorption.

# 3.1.3 Other Hazardous Materials

Devices with other potential hazardous materials were visually identified during the survey walk through and their quantities were estimated and recorded. No attempt was made to disassemble devices or sample suspect materials within the devices.

#### 3.2 Limitations

VEC's intent was to perform a thorough survey based on industry standards and make a good faith effort to access all building materials down to the structural components and/or interstitial spaces. Sub-surface areas were not included as part of this survey, hence no



excavation was conducted to discover buried insulated piping and/or asbestos cement utility piping concealed below the surface. Materials encountered in the buildings/site that are not part of this report must be properly sampled for the content of asbestos or assumed to be asbestos containing prior to any disturbance.

The lead survey was to screen for lead levels and provide results which are generally representative of typical conditions but are not inclusive of all painted/coated surfaces present at this site or the impacted areas. This survey was not a surface by surface inspection as outlined in the U.S. Department of Housing and Urban Development (HUD) *Guidelines For the Evaluation and Control of Lead-Based Paint Hazards in Housing* pursuant to Title X of the Housing and Community Development Act of 1992. The analytical data can be helpful in evaluation of lead-related environmental risks in general. However, the data cannot be used to calculate worker exposures and is not a substitute for employee exposure monitoring or waste stream sampling.

VEC's limited visual survey indicated that light fixtures with ballasts that may contain PCB oil are present. VEC recommends that all ballasts be visually inspected, prior to disposal, to determine if they contain PCB's. Those ballasts marked No PCB's or PCB Free can be considered as such as should be treated as UW - electronic waste. All PCB-containing devices, including, but not limited to ballasts, should be removed or have the oils removed and properly handled, collected, stored, transported and recycled or disposed of by an approved recycling or disposal facility in accordance with the requirements of Title 22 CCR 67426.1.

Findings, conclusions, recommendations and analytical data offered in this report have been derived from reviewing existing information provided by the client, visual assessment of the building materials and systems, and the outcome of sampling and analysis of suspect ACM and suspect lead containing materials.

Quantities and locations are based upon areas that were accessed. Materials similar to those in this report may be present in areas which were not accessed. Because of this, VEC recommends including line item pricing, allowances, and/or additive/deductive wording to bid sheets for unforeseen conditions.



September 12, 2013 Project No. 1306225

All material quantities reported herein are rough order of magnitude estimates and should not be used for bidding purposes. All contractors are responsible for accurately determining quantities and locations of materials identified in this report.

Respectfully Submitted, Vista Environmental Consulting

**Reviewed and Approved** 

Christopher R. Burns Senior Project Manager CAC #92-0224 CDPH #663 Charles R. Bove Principal CAC #92-0160



**APPENDIX A - Bulk Sample Analytical Results** 

#### ASBESTOS

Homogeneous	Material Description	Sample Location	Lab Result	Quantity
Area/Sample Number HA 01	Wallboard, White/Joint Compound, White with Texture Coat			11,000 SF
17482-130824-HA01-01		Laundry Room	Wallboard = ND, Joint Compound = 2% Chrysotile	
17482-130824-HA01-02		Bedroom 1	Wallboard = ND, Joint Compound = 2% Chrysotile	
17482-130824-HA01-03		Heater Closet	Wallboard = ND, Joint Compound = 2% Chrysotile	
HA 02	Texture Coat, White, Small			11,000 SF
17482-130824-HA02-01		Living Room	Paint = ND, Texture Coat = 2 % Chrysotile	
17482-130824-HA02-02		1st Floor South East Closet	Paint = ND, Texture Coat = 2 % Chrysotile	
17482-130824-HA02-03		Bedroom 2 Closet	Paint = ND, Texture Coat = 2 % Chrysotile	
17482-130824-HA02-04		Bedroom 2	Paint = ND, Texture Coat = 2 % Chrysotile	
17482-130824-HA02-05		Bedroom 5	Paint = ND, Texture Coat = 2 % Chrysotile	
17482-130824-HA02-06		Bedroom 6	Paint = ND, Texture Coat = 2 % Chrysotile	
17482-130824-HA02-07		Bathroom 4	Paint = ND, Texture Coat = 2 % Chrysotile	
HA 03	Insulation, Black & Brown, Wire			
17482-130824-HA03-01		Kitchen	ND	
17482-130824-HA03-02		Hallway	ND	
HA 04	Acoustic Ceiling Tile, 12" White, Non- uniform Hole/Mastic			
17482-130824-HA04-01		Bedroom 1	ND	
17482-130824-HA04-02		Bedroom 1	ND	
HA 05	Vapor Paper, Brown, Under Hardwood Floor			
17482-130824-HA05-01		Living Room	ND	
17482-130824-HA05-02		Kitchen	ND	
HA 06	Mastic, Black, Sink, Undercoating			10 SF
17482-130824-HA06-01		Kitchen	2% Chrysotile	
HA 07	Mortar, White/Firebrick, Beige			
17482-130824-HA07-01		Family Room - Fireplace	ND	
17482-130824-HA07-02		Family Room - Fireplace	ND	

Homogeneous	Material Description	Sample Location	Lab Result	Quantity
Area/Sample Number HA 08	Wallboard, White/Joint Compound, White, with Texture Coat			2,000 SF
17482-130824-HA08-01		Garage	Wallboard = ND, Joint Compound = 2% Chrysotile	
HA 09	Texture Coat, White, Large			2,000 SF
17482-130824-HA09-01		Garage - North West	ND	
17482-130824-HA09-02		Garage - North East	Paint = ND, Texture Coat = 2 % Chrysotile	
17482-130824-HA09-03		Garage - South West	Paint = ND, Texture Coat = 2 % Chrysotile	
HA 10	Insulation, Gray, Duct			75 SF
17482-130824-HA10-01		Heater Closet	75 % Chrysotile	
17482-130824-HA10-02		Bathroom 4 Register	75 % Chrysotile	
HA 11	Vapor Paper, Black, Wall			
17482-130824-HA11-01		Bathroom 5	ND	
17482-130824-HA11-02		Bathroom 4	ND	
HA 12	Insulation, Gray, Blown-In Attic			
17482-130824-HA12-01		Attic South West	ND	
17482-130824-HA12-02		Attic South West	ND	
17482-130824-HA12-03		Attic South West	ND	
HA13	Tape, White, Duct Seam			50 SF
17482-130824-HA13-01		Attic - South West By Door	75 % Chrysotile	
HA 14	Vinyl Sheet Flooring, Beige, Pebble Pattern, Remnants/Backing			60 SF
17482-130824-HA14-01		1st Floor East Closet on Rolls on Ground	Vinyl Sheet Flooring = ND, Backing = 70 %	
HA 15	Vinyl Floor Tile, 9" Green, Flexachrome, in Box			5 SF
Assumed		N/A	Box Marked "Asbestos	
HA 16	Mortar, White/Backing Board, Gray, Floor			
17482-130824-HA16-01		Bathroom 1	ND	
17482-130824-HA16-02		Bathroom 2	ND	
HA 17	Mastic, Yellow, Ceramic Floor			
17482-130824-HA17-01		Hallway - Entry	ND	
HA 18	Mortar, White/Grout, Red, on Wood			
17482-130824-HA18-01		Dining Room	ND	
HA 19	Leveling Compound, White			
17482-130824-HA19-01		Bedroom 3	ND	

Homogeneous				
Area/Sample Number	Material Description	Sample Location	Lab Result	Quantity
HA 20	Vapor Paper, Black, Floor			
17482-130824-HA20-01		Hallway	ND	
HA 21	Mortar, White/Backing Board, Gray, 12" Ceramic Floor			
17482-130824-HA21-01		Bathroom 5	ND	
	Paint, Beige, Exterior	Exterior		
17482-130824-HA22-01		Exterior - West	ND	
17482-130824-HA22-02		Exterior - South West	ND	
HA 23	Putty, White, Window			
17482-130824-HA23-01		Living Room Window	ND	
17482-130824-HA23-02		Bedroom 1 Window	ND	
HA 24	Roofing, Black, Shingle			
17482-130824-HA24-01		Roof - South East	ND	
17482-130824-HA24-02		Roof - West Central	ND	
HA 25	Mastic, Brown, Baseboard			
17482-130824-HA25-01		Bathroom 3	ND	
HA 26	Roofing, Black Sheet			
17482-130824-HA26-01		Roof - South Central	ND	
HA 27	Mastic, Gray, Black/Silver Roof			40 SF
17482-130824-HA27-01		Roof - South Central	10 % Chrysotile	
HA 28	Sealant, Beige, Flashing			
17482-130824-HA28-01		Roof - South Central	ND	
HA 29	Sealant, White, Window Frame, Wall Seams			
17482-130824-HA29-01		South West Window	ND	
17482-130824-HA29-02		South Central Seam	ND	
HA 30	Sealant, White, Exterior Wall Seams			3 SF (36 LF)
17482-130824-HA30-01		Exterior - North East	"Trace" Chrysotile	
HA 31	Sealant, Off-White, Door Frame			
17482-130824-HA31-01		Exterior of Garage - Door Frame	ND	
HA 48	Mastic, Black, Exterior Seam			3 SF
17482-130824-HA48-01		Exterior South East Where Garage Attaches to House	10% Chrysotile	
HA 49	Sealant, Tan, Exterior Patch			
17482-130824-HA49-01		Exterior of House - North	ND	
HA 50	Concrete, Gray			
17482-130824-HA50-01		Exterior Driveway	ND	
17482-130824-HA50-02		Exterior - Walkway	ND	

Homogeneous Area/Sample Number	Material Description	Sample Location	Lab Result	Quantity
HA 51	Roofing, Black & Green, Shingle			
17482-130824-HA51-01		Attic	ND	

#### LEAD

Homogeneous				
Area/Sample Number	Material Description	Sample Location	Lab Result	Quantity
HA 32	Paint, Beige, Drywall			
17482-130824-HA32-01		Living Room	0.031 wt%	
HA 33	Paint, Green, Drywall			
17482-130824-HA33-01		Living Room	0.006 wt%	
HA 34	Paint, White, Drywall			
17482-130824-HA34-01		Bedroom 1 - Ceiling	0.008 wt%	
HA 35	Paint, White, Wood			
17482-130824-HA35-01		Living Room	0.079 wt%	
HA 36	Paint, White, Wood			
17482-130824-HA36-01		Bedroom 1	<0.006 wt%	
HA 37	Beige, 15" Ceramic Floor			
17482-130824-HA37-01		Entry	7 mg/kg	
HA 38	Beige, Pattern, 15" Ceramic Floor			
17482-130824-HA38-01		Kitchen	25 mg/kg	
HA 39	Gray, 12" Ceramic Floor			
17482-130824-HA39-01		Bathroom 5	<7 mg/kg	
HA 40	Paint, White, Wood			No Damage
17482-130824-HA40-01		Main Entry Door	0.85 wt%	
HA 41	Paint, Beige, Wood			
17482-130824-HA41-01		Exterior - South West Wall	0.49 wt%	
HA 42	Paint, Beige, Wood			No Damage
17482-130824-HA42-01		Exterior - West Window of Bedroom 1	1.9 wt%	
HA 43	Paint, White, Wood			
17482-130824-HA43-01		Exterior - West Window of Living Room	0.11 wt %	
HA 44	Paint, White, Wood			
17482-130824-HA44-01		Exterior of Garage - North West Door Frame	0.009 wt %	
HA 45	Paint , Beige, Wood			
17482-130824-HA45-01		Exterior of Garage - East Wall	<0.006 wt%	

Homogeneous Area/Sample Number	Material Description	Sample Location	Lab Result	Quantity
HA 46	Paint, White, Wood			
		Exterior of Garage -		
17482-130824-HA46-01		South East Window	<0.006 wt%	
		Frame		
HA 47	Gray, Pattern,			
HA 47	Ceramic Floor			
17482-130824-HA47-01		Bathroom 3	<7 mg/kg	

#### ASBESTOS

Homogeneous Area/Sample Number	Material Description	Sample Location	Lab Result	Quantity
HA 01	Paint, White/Concrete, Gray			
278-130824-HA01-01		North Concrete Pad	ND	
HA 02	Concrete, Gray			
278-130824-HA02-01		South Concrete Pad	ND	
HA 03	Asphalt, Black			
278-130824-HA03-01		Driveway North	ND	
278-130824-HA03-02		Driveway South	ND	

#### LEAD

Homogeneous Area/Sample Number	Material Description	Sample Location	Lab Result	Quantity
HA 04	Paint, White			
278-130824-HA04-01		North Concrete Pad	0.018 wt%	

APPENDIX B - Laboratory Reports/Chain-Of-Custody Forms



Vista Environmental Consultants Project Manager 2984 Teagarden St. San Leandro, CA 94577					Client ID: Report Number Date Received: Date Analyzed: Date Printed: First Reported:	08/28/1 08/29/1 08/29/1	3 3 3
Job ID/Site: 1306255 - County of Alama CA Date(s) Collected:	eda GSA, Cher	ryland, 17482 E	Boston Rd., Ha	ayward,	FALI Job ID: Total Samples S Total Samples A		58 58
Sample ID	Lab Number	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
<b>17482-130824-HA01-01</b> Layer: White Drywall Layer: Off-White Joint Compound Layer: White Tape Layer: Off-White Texture Layer: Paint	11419793	Chrysotile Chrysotile	ND 2 % ND 2 % ND				
Total Composite Values of Fibrous Com Cellulose (20 %) Fibrous Glass (10	*	Asbestos (Trace	)				
<b>17482-130824-HA01-02</b> Layer: White Drywall Layer: Off-White Joint Compound Layer: White Tape Layer: Off-White Texture Layer: Paint	11419794	Chrysotile Chrysotile	ND 2 % ND 2 % ND				
Total Composite Values of Fibrous Com Cellulose (20 %) Fibrous Glass (10	-	Asbestos (Trace	)				
<b>17482-130824-HA01-03</b> Layer: White Drywall Layer: Off-White Joint Compound	11419795	Chrysotile	ND 2 %				
Total Composite Values of Fibrous ComCellulose (20 %)Fibrous Glass (10	-	Asbestos (Trace	)				
<b>17482-130824-HA02-01</b> Layer: Off-White Texture Layer: Paint Layer: White Texture Layer: Paint	11419796	Chrysotile	2 % ND ND ND				
Total Composite Values of Fibrous Com Cellulose (Trace)	ponents: A	Asbestos (Trace	)				

			- ·		- ·		
Sample ID	Lab Number	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
<b>17482-130824-HA02-02</b> Layer: Off-White Texture Layer: Paint Layer: White Texture Layer: Paint	11419797	Chrysotile	2 % ND ND ND				
Total Composite Values of Fibrous Co Cellulose (Trace)	mponents:	Asbestos (Trace	e)				
<b>17482-130824-HA02-03</b> Layer: Off-White Texture Layer: Paint Layer: White Texture Layer: Paint	11419798	Chrysotile	2 % ND ND ND				
Total Composite Values of Fibrous Co Cellulose (Trace)	omponents:	Asbestos (Trace	2)				
<b>17482-130824-HA02-04</b> Layer: Off-White Texture Layer: Paint Layer: White Texture Layer: Paint	11419799	Chrysotile	2 % ND ND ND				
Total Composite Values of Fibrous Co Cellulose (Trace)	omponents:	Asbestos (Trace	2)				
<b>17482-130824-HA02-05</b> Layer: Off-White Texture Layer: Paint Layer: White Texture Layer: Paint	11419800	Chrysotile	2 % ND ND ND				
Total Composite Values of Fibrous Co Cellulose (Trace)	mponents:	Asbestos (Trace	2)				
<b>17482-130824-HA02-06</b> Layer: Off-White Texture Layer: Paint Layer: White Texture Layer: Paint	11419801	Chrysotile	2 % ND ND ND				
Total Composite Values of Fibrous Co Cellulose (Trace)	omponents:	Asbestos (Trace	e)				
<b>17482-130824-HA02-07</b> Layer: Off-White Texture Layer: Paint Layer: White Texture Layer: Paint	11419802	Chrysotile	2 % ND ND ND				
Total Composite Values of Fibrous Co Cellulose (Trace)	omponents:	Asbestos (Trace					

Client Name: Vista Environmental Cons	ultants				Report Numbe Date Printed:	er: B1812 08/29/	
Sample ID	Lab Numbe	Asbestos r Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
17482-130824-HA03-01 Layer: Black Woven Material Layer: Black Non-Fibrous Material	11419803		ND ND				
Total Composite Values of Fibrous Cor Cellulose (45 %)	nponents:	Asbestos (ND)					
<b>17482-130824-HA03-02</b> Layer: Black Woven Material Layer: Tan Fibrous Material	11419804		ND ND				
Total Composite Values of Fibrous Cor Cellulose (90 %)	nponents:	Asbestos (ND)					
<b>17482-130824-HA04-01</b> Layer: Brown Mastic Layer: Tan Fibrous Material Layer: Paint	11419805		ND ND ND				
Total Composite Values of Fibrous Cor Cellulose (95 %)	nponents:	Asbestos (ND)					
<b>17482-130824-HA04-02</b> Layer: Brown Mastic Layer: Tan Fibrous Material Layer: Paint	11419806		ND ND ND				
Total Composite Values of Fibrous Cor Cellulose (95 %)	nponents:	Asbestos (ND)					
<b>17482-130824-HA05-01</b> Layer: Brown Fibrous Material	11419807		ND				
Total Composite Values of Fibrous Cor Cellulose (95 %)	nponents:	Asbestos (ND)					
<b>17482-130824-HA05-02</b> Layer: Brown Fibrous Material	11419808		ND				
Total Composite Values of Fibrous Cor Cellulose (95 %)	nponents:	Asbestos (ND)					
<b>17482-130824-HA06-01</b> Layer: Black Coating	11419809	Chrysotile	2 %				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (2%)					
<b>17482-130824-HA07-01</b> Layer: Red-Brown Cementitious Mater Layer: White Cementitious Material	11419810 ial		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					
<b>17482-130824-HA07-02</b> Layer: Red-Brown Cementitious Mater Layer: White Cementitious Material	11419811 ial		ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (ND)					

Client Name: Vista Environmental Cons	ultants				Report Numb Date Printed:		
Sample ID	Lab Number	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
<b>17482-130824-HA08-01</b> Layer: White Drywall Layer: Off-White Joint Compound Layer: White Tape Layer: White Texture Layer: Paint	11419812	Chrysotile	ND 2 % ND ND ND				
Total Composite Values of Fibrous ConCellulose (20 %)Fibrous Glass (10)	-	Asbestos (Trace	)				
<b>17482-130824-HA09-01</b> Layer: Pink Drywall Layer: White Texture Layer: Paint	11419813		ND ND ND				
Total Composite Values of Fibrous ConCellulose (20 %)Fibrous Glass (10	-	Asbestos (ND)					
<b>17482-130824-HA09-02</b> Layer: Off-White Texture Layer: Paint	11419814	Chrysotile	2 % ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (2%)					
<b>17482-130824-HA09-03</b> Layer: Off-White Texture Layer: Paint Layer: White Texture Layer: Paint	11419815	Chrysotile	2 % ND ND ND				
Total Composite Values of Fibrous Cor Cellulose (Trace)	nponents:	Asbestos (Trace	)				
<b>17482-130824-HA10-01</b> Layer: Grey Fibrous Material Layer: Foil	11419816	Chrysotile	75 % ND				
Total Composite Values of Fibrous Cor Cellulose (20 %)	nponents:	Asbestos (71%)					
17482-130824-HA10-02 Layer: Grey Fibrous Material	11419817	Chrysotile	75 %				
Total Composite Values of Fibrous Con Cellulose (20 %)	nponents:	Asbestos (75%)					
<b>17482-130824-HA11-01</b> Layer: Black Felt	11419818		ND				
Total Composite Values of Fibrous Cor Cellulose (95 %)	nponents:	Asbestos (ND)					
<b>17482-130824-HA11-02</b> Layer: Black Felt	11419819		ND				
Total Composite Values of Fibrous Cor Cellulose (95 %)	nponents:	Asbestos (ND)					

Client Name: Vista Environmental Consu	ıltants				Report Numb Date Printed:	er: B1812 08/29/	
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
17482-130824-HA12-01 Layer: Off-White Fibrous Material	11419820		ND				
Total Composite Values of Fibrous ConCellulose (Trace)Fibrous Glass (99)	*	Asbestos (ND)					
17482-130824-HA12-02 Layer: Off-White Fibrous Material	11419821		ND				
Total Composite Values of Fibrous Con Cellulose (Trace) Fibrous Glass (99	-	Asbestos (ND)					
<b>17482-130824-HA12-03</b> Layer: Off-White Fibrous Material	11419822		ND				
Total Composite Values of Fibrous ConCellulose (Trace)Fibrous Glass (99)	*	Asbestos (ND)					
17482-130824-HA13-01 Layer: Grey Fibrous Material	11419823	Chrysotile	75 %				
Total Composite Values of Fibrous Con Cellulose (20 %)	ponents:	Asbestos (75%)					
<b>17482-130824-HA14-01</b> Layer: Brown Sheet Flooring Layer: Fibrous Backing	11419824	Chrysotile	ND 70 %				
Total Composite Values of Fibrous Con Cellulose (5 %)	ponents:	Asbestos (25%)					
<b>17482-130824-HA16-01</b> Layer: Red-Brown Cementitious Materi Layer: Grey Mortar	11419825 al		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>17482-130824-HA16-02</b> Layer: Red-Brown Cementitious Materi Layer: Grey Mortar	11419826 al		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>17482-130824-HA17-01</b> Layer: Yellow Mastic	11419827		ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>17482-130824-HA18-01</b> Layer: Red-Brown Cementitious Materi Layer: Grey Mortar	11419828 al		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					

Client Name: Vista Environmental Consu	ıltants				Report Numb Date Printed:		
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
17482-130824-HA19-01 Layer: White Non-Fibrous Material	11419829		ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>17482-130824-HA20-01</b> Layer: Black Felt	11419830		ND				
Total Composite Values of Fibrous Con Cellulose (90 %)	ponents:	Asbestos (ND)					
<b>17482-130824-HA21-01</b> Layer: Red-Brown Cementitious Materi Layer: Grey Mortar Layer: Beige Semi-Fibrous Material	11419831 al		ND ND ND				
Total Composite Values of Fibrous ConCellulose (5 %)Synthetic (5 %)	ponents:	Asbestos (ND)					
<b>17482-130824-HA22-01</b> Layer: Beige Paint	11419832		ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>17482-130824-HA22-02</b> Layer: Beige Paint	11419833		ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>17482-130824-HA23-01</b> Layer: Grey Putty Layer: Paint	11419834		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>17482-130824-HA23-02</b> Layer: Grey Putty Layer: Paint	11419835		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)					
17482-130824-HA24-01 Layer: Grey Roof Shingle Layer: Brown Roof Shingle Layer: Black Felt	11419836		ND ND ND				
Total Composite Values of Fibrous ConCellulose (30 %)Fibrous Glass (20	-	Asbestos (ND)					
17482-130824-HA24-02 Layer: Grey Roof Shingle Layer: Brown Roof Shingle Layer: Black Felt	11419837		ND ND ND				
Total Composite Values of Fibrous ComCellulose (30 %)Fibrous Glass (20	-	Asbestos (ND)					

Client Name: Vista Environmental Consu	ıltants				Report Numb Date Printed:		8181270 8/29/13	
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer	
<b>17482-130824-HA25-01</b> Layer: Brown Mastic	11419838		ND					
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)						
17482-130824-HA26-01 Layer: Stones Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt Layer: Black Tar Layer: Black Felt	11419839		ND ND ND ND ND ND					
Total Composite Values of Fibrous ConCellulose (5 %)Fibrous Glass (50 %)Comment: Bulk complex sample.	*	Asbestos (ND)						
<b>17482-130824-HA27-01</b> Layer: Black Mastic	11419840	Chrysotile	10 %					
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (10%)						
17482-130824-HA28-01 Layer: Off-White Non-Fibrous Material	11419841		ND					
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)						
<b>17482-130824-HA29-01</b> Layer: White Non-Fibrous Material Layer: Paint	11419842		ND ND					
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)						
<b>17482-130824-HA29-02</b> Layer: White Non-Fibrous Material Layer: Paint	11419843		ND ND					
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)						
<b>17482-130824-HA30-01</b> Layer: White Non-Fibrous Material Layer: Paint	11419844	Chrysotile	Trace ND					
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (Trace	)					
17482-130824-HA31-01 Layer: Off-White Non-Fibrous Material Layer: Paint	11419845		ND ND					
Total Composite Values of Fibrous Con Cellulose (Trace)	ponents:	Asbestos (ND)						

Client Name: Vista Environmental Const		Report Number:   B181270     Date Printed:   08/29/13					
Sample ID	Lab Numbe	Asbestos r Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
<b>17482-130824-HA48-01</b> Layer: Black Mastic	11419846	Chrysotile	10 %				
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (10%)					
<b>17482-130824-HA49-01</b> Layer: Tan Mastic	11419847		ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)					
<b>17482-130824-HA50-01</b> Layer: Grey Cementitious Material	11419848		ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)					
<b>17482-130824-HA50-02</b> Layer: Grey Cementitious Material Layer: Paint	11419849		ND ND				
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)					
<b>17482-130824-HA51-01</b> Layer: Green Roof Shingle Layer: Black Felt	11419850		ND ND				
Total Composite Values of Fibrous ConCellulose (55 %)Fibrous Glass (10)	-	Asbestos (ND)					

Lad Shrower

Tad Thrower, Laboratory Supervisor, Hayward Laboratory

Note: Limit of Quantification ('LOQ') = 1%. 'Trace' denotes the presence of asbestos below the LOQ. 'ND' = 'None Detected'. Analytical results and reports are generated by Forensic Analytical Laboratories Inc. (FALI) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by FALI to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by FALI. The client is solely responsible for the use and interpretation of test results and reports requested from FALI. Forensic Analytical Laboratories Inc. is not able to assess the degree of hazard resulting from materials analyzed. FALI reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. All samples were received in acceptable condition unless otherwise noted. **VISTA ENVIRONMENTAL** 

CONSULTING

ASBESTOS BULK SAMPLE LOG OFFICE 510.346.8860 FAX 888.653.8889 •

2984 TEAGARDEN STREET SAN LEANDRO, CA 94577

CLIENT: County of Alameda GSA

DATE:

LOCATION: Cherryland, 17482 Boston Rd., Hayward, CA

PROJECT NUMBER: 1306225

SAMPLED BY: CHRIS BURNS

CAC OR SST NO: 9208

8/20/

BUILDING	Номо	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY			
	AREA ID					(SF/LF/EA)			
17982- 130824	HAOI	01	WELK	underuhib,	with Terrife Cot	toz			
17482- 130824-	HA 01	02	$\square$	$\overline{)}$					
17482- 130824-	HA O \	03	X	×					
17482- 130824-	HA 02	01	Terrore	COPT, W	ile smal				
17482- 130824-	<i>## 0</i> 2	<u>02</u>		<u> </u>					
17488- 130824-	##02	03							
17482- 130824-	## 02	04							
17482- 130824-	## 02,	05							
17482- 130824-	#102	06							
17482- 130824	##02	07							
ANALYTICAL METHOD: PLM 400 PT COUNT TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY DATA SENT TO: CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860 SPECIAL INSTRUCTIONS:									
CHAIN OF CUSTOR CHRISBURS 8/28/13									
1. <u>tors</u> TRANSFER SIGNATURE <u>CHRISTICAL ME</u> 2. <u>Hou</u> TRANSFER SIGNATURE <u>Alenovalion</u> <u>B·28.13</u> <u>Billine</u> <u>Date/Time</u> <u>Date/Time</u> <u>Date/Time</u> <u>Date/Time</u>									



2984 TEAGARDEN STREET SAN LEANDRO, CA 94577

С

OE

PAGE

OFFICE 510.346.8860 FAX 888.653.8889

#### CLIENT: County of Alameda GSA

220/1 DATE:

LOCATION: Cherryland, 17482 Boston Rd., Hayward, CA PROJECT NUMBER: 1306225

# SAMPLED BY: CHRIS BURNS

CAC OR SST NO: 920224

Номо QUANTITY BUILDING NUMBER MATERIAL, DESCRIPTION LOCATION AREA ID (SF/LF/EA) 17482-Black Brating ( INSCRATTINA HA O3 INP 130824 17482-40-130824-17482-Noturn He MASTIC abu-Brau 4A () 2 0 130824-17482-130824-17482-Srowh 130824-1001 JIZT 17488-130824-17482-Mastic 130824-17482--MATT HA () Ű 130824-FUPOLICE 17482-#DI 130824-179.82-ULIA UR (P XTUR LOFT ୦୧ 130824 4 ANALYTICAL METHOD: PLM 400 PICOUNT TURNAROUND TIME: SAME DAY (24HR 48 HR 3 DAY DATA SENT TO: CHRISTOPHER BURNS VIA E-MAIL CHRISBURNS@VISTAENV.COM QUESTIONS CALL: 510,658,8860 SPECIAL INSTRUCTIONS: CHAIN OF CUSTOC thisture 1. 2015 ER SIGNATURE TRANS PRINTED NAME endra B. 28-7301.2 DATE/TIME leon TRANSFER SIGNATURE PRINTED NAME з. TRANSFER SIGNATURE PRINTED NAME DATE/TIME



2984 TEAGARDEN STREET SAN LEANDRO, CA 94577 OFFICE 510.346.8860 FAX 888.653.8889

CLIENT: County of Alameda GSA

220 DATE:

LOCATION: _____Cherryland, 17482 Boston Rd., Hayward, CA ______ROJECT N

PROJECT NUMBER: 1306225

SAMPLED BY: CHRIS BURNS

CAC OR SST NO: 920224

BUILDING	HOMO AREA ID	NUMBER	MATERIAL	DESCRIPTION	LOCATION	QUANTITY (SF/LF/EA)			
17482- 130824	HAOG	01	Testur	while, Lave	Φ				
17482- 130824-	HA OG	02		$\sum_{i=1}^{n}$	jt .				
100 1	HA 09	03	<b>1</b>	$\checkmark$					
17482- 130824-	114 10	01	INSULATO	4 Gray	DUCT				
17482- 130824-	##10	02	$\mathbf{i}$						
17488- 130824-	HA [1	01	Vapur Paper	- Black,	Wall				
17482- 130824-	##	09		J_					
17482- 130824-	## 12	01	MSLATIC	N, GUAL	Blowke-1N				
17482- 130824-	#12	02		(					
17482- 13082#	#12	03	$\checkmark$						
ANALYTICAL METHOD: PLM 490 PECCEENT TURNAROUND TIME: SAME DAY 24HR 48 HR 3 DAY DATA SENT TO: CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA:ENV.COM QUESTIONS CALL; 510,658.8860 SPECIAL INSTRUCTIONS:									
				HRIS BUCK PRENTED NAME	DATE/TIME	<u></u>			
5. fier		ER SIGNAT		printed NAME	5. 8.28-13 C	1130p			
3 PAGE	TRANSF		URE	PRINTED NAME	DATE/TIME	<u>.</u>			



2984 TEAGARDEN STREET SAN LEANDRO, CA 94577 OFFICE 510.346.8860 FAX 888.653.8889

CLIENT: County of Alameda GSA

ଅ '20 DATE:

LOCATION: Cherryland, 17482 Boston Rd., Hayward, CA

PROJECT NUMBER: 1306225

SAMPLED BY: CHRIS BURNS

OF

CAC OR SST NO: 920224

Номо QUANTITY BUILDING MATERIAL. DESCRIPTION NUMBER LOCATION (SF/LF/EA) AREA ID 17482-Ô١ 44 | -anQ 30824 17482-44 Dalan 130824-17482-VIVIETAR HĄ 16 130824-Sacking 7482-HA 1 (C 0 2 130824-17-482μħ MASTIC 130824-01aMi 17988-MO 130824-D, /cƳ 17482-130824-17482-H d 130824-17482-#id Examilita GIA 130824-17982-Talkt ## do 2(C 13082# ANALYTICAL METHOD: PLM TURNAROUND TIME: SAME DAY (24HR )48 HR 3 DAY 400 PT COUNT DATA SENT TO: CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM QUESTIONS CALL: 510.658.8860 SPECIAL INSTRUCTIONS: CHAIN OF CUSTO KISOUR £775 1. ER SIGN ATURE PRINTED NAME TRANS dra <u>1:30p</u> .28-13 6011 TRANSFER SIGNATURE PRINTED NAME 3. TRANSFER SIGNATURE PRINTED NAME DATE/TIME 4 PAGE



2984 TEAGARDEN STREET SAN LEANDRO, CA 94577 OFFICE 510.346.8860 FAX 888.653.8889

CLIENT: County of Alameda GSA

820/1 DATE:

LOCATION: Cherryland, 17482 Boston Rd., Hayward, CA

PROJECT NUMBER: 1306225

SAMPLED BY: CHRIS BURNS

OF

PAGE

CAC OR SST NO: 920204

QUANTITY Номо DESCRIPTION BUILDING NUMBER MATERIAL. LOCATION (SF/LF/EA) AREA ID 17482-Parter 44 X O QJ B0824 17482-RHI HA O TAT. 130824-17482-09 44 O 130824-17482-HA J K00 [(AG 90 130824-17482-130824-17488-C- ] 14STI 130824-17482-HA 130824-17482th 2 0 130824-17482-HA Q ρ ρ 'C 130824-17982-₩ rene allall Segn 13082# 91 TURNAROUND TIME: SAME DAY (24HR '48 HR 3 DAY ANALYTICAL METHOD: PLM 400 ELCOUNT CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM DATA SENT TO: QUESTIONS CALL: 510.658.8860 SPECIAL INSTRUCTIONS: CHAIN OF CUST 1. 2015 ER SIGNATURE TRANS 28-13 TRANSFER SIGNATURE PRINTED NAME 3. DATE/TIME TRANSFER SIGNATURE PRINTED NAME

TEAGARDEN STREET



2984 TEAGARDEN STREET SAN LEANDRO, CA 94577 OFFICE 510.346.8860 888,653.8889 FAX

CLIENT: County of Alameda GSA

SAMPLED BY: CHRIS BURNS

OF

8/20/1 DATE:

LOCATION: Cherryland, 17482 Boston Rd., Hayward, CA PROJECT NUMBER: 1306225

CAC OR SST NO: 920824

QUANTITY Номо DESCRIPTION LOCATION BUILDING NUMBER MATERIAL (SF/LF/EA) AREA ID 17482-4429 WIGOON France Wall perm S D o Lalart 130824 17482- $O_{G,N}$ 447 130824-17482-443 130824grant ( Cγι 17482-Nastic  $\mathcal{D}_{\mathbf{d}}$ n 130824-17482-Lalara 94 Þ 130824-17488-5(AC  $\mathcal{O}$ 130824-17482-##50 2 130824-17482-#5( ମ୍ | 100 TTYL onugle ineffit ĩĨ 5% 130824-17482-腁 130824-17982-H 13,0004 TURNAROUND TIME: SAME DAY (24HR )48 HR 3 DAY ANALYTICAL METHOD: PLM 400 PT COUNT CHRISTOPHER BURNS VIA E-MAIL: CHRISBURNS@VISTA-ENV.COM DATA SENT TO: QUESTIONS CALL: 510.658.8860 SPECIAL INSTRUCTIONS: CHAIN OF CUSE 1. 2015 ER SIGNATURE TRANS rater 化八 PRINTED NAME TRANSFER SIGNATURE 3. TRANSFER SIGNATURE PRINTED NAME DATE/TIME  $\bigcirc$ Page



# Metals Analysis of Paints

Vista Environmental Consultants	Client ID: Bonort Number	L1161
Project Manager 2984 Teagarden St.	Report Number: Date Received:	08/28/13
Son Loondro, CA 04577	Date Analyzed: Date Printed:	08/29/13 08/29/13
San Leandro, CA 94577	First Reported:	08/29/13
Job ID / Site: 1306225, County of Almeda GSA-Cherryland Community Center, 17482 Boston Rd., Hayward, CA	FALI Job ID:	L1161

Date(s) Collected: 8/24/13

Total Samples Submitted: 12 Total Samples Analyzed: 12

					20041	sumpres muljietut
Sample Number	Lab Number	Analyte	Result	Result Units	Reporting Limit*	Method Reference
17482-130824-HA32-01	30474694	Pb	0.031	wt%	0.007	EPA 3050B/7420
17482-130824-HA33-01	30474695	Pb	0.006	wt%	0.006	EPA 3050B/7420
17482-130824-HA34-01	30474696	Pb	0.008	wt%	0.006	EPA 3050B/7420
17482-130824-HA35-01	30474697	Pb	0.079	wt%	0.006	EPA 3050B/7420
17482-130824-HA36-01	30474698	Pb	< 0.006	wt%	0.006	EPA 3050B/7420
17482-130824-HA40-01	30474699	Pb	0.85	wt%	0.06	EPA 3050B/7420
17482-130824-HA41-01	30474700	Pb	0.49	wt%	0.03	EPA 3050B/7420
17482-130824-HA42-01	30474701	Pb	1.9	wt%	0.2	EPA 3050B/7420
17482-130824-HA43-01	30474702	Pb	0.11	wt%	0.006	EPA 3050B/7420
17482-130824-HA44-01	30474703	Pb	0.009	wt%	0.006	EPA 3050B/7420
17482-130824-HA45-01	30474704	Pb	< 0.006	wt%	0.006	EPA 3050B/7420
17482-130824-HA46-01	30474705	Pb	< 0.006	wt%	0.006	EPA 3050B/7420

* The Reporting Limit represents the lowest amount of analyte that the laboratory can confidently detect in the sample, and is not a regulatory level. The Units for the Reporting Limit are the same as the Units for the Final Results.

amele Sile

Daniele Siu, Laboratory Supervisor, Hayward Laboratory

Analytical results and reports are generated by Forensic Analytical at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by Forensic Analytical to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by Forensic Analytical. The client is solely responsible for the use and interpretation of test results and reports requested from Forensic Analytical. Forensic Analytical is not able to assess the degree of hazard resulting from materials analyzed. Forensic Analytical reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. Any modifications that have been made to referenced test methods are documented in Forensic Analytical's Standard Operating Procedures Manual. Sample results have not been blank corrected. Quality control and sample receipt condition were acceptable unless otherwise noted.



# Metals Analysis of Bulks

Vista Environmental Cons Project Manager 2984 Teagarden St. San Leandro, CA 94577	Repo Date Date Date	nt ID: ort Number: Received: Analyzed: Printed: Reported:	L1161 M142263 08/28/13 08/29/13 08/29/13 08/29/13							
Job ID / Site: 1306225, County of Almeda GSA-Cherryland Community Center, 17482 Boston Rd., Hayward, CA FALI Job ID: L1161   Date(s) Collected: 8/24/13 Total Samples Submitted: 4   Total Samples Analyzed: 4										
Sample Number	Lab Number	Analyte	Result	Result Units	Reporting Limit*	Reporting Method				
17482-130824-HA37-01	30474706	Pb	7	mg/kg	7	EPA 3	050B/7420			
17482-130824-HA38-01	30474707	Pb	25	mg/kg	6	EPA 3	050B/7420			
17482-130824-HA39-01	30474708	Pb	< 7	mg/kg	7	EPA 3	050B/7420			
17482-130824-HA47-01	30474709	Pb	< 7	mg/kg	7	EPA 3	050B/7420			

* The Reporting Limit represents the lowest amount of analyte that the laboratory can confidently detect in the sample, and is not a regulatory level. The Units for the Reporting Limit are the same as the Units for the Final Results.

amele Sile

Daniele Siu, Laboratory Supervisor, Hayward Laboratory

Analytical results and reports are generated by Forensic Analytical at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by Forensic Analytical to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by Forensic Analytical. The client is solely responsible for the use and interpretation of test results and reports requested from Forensic Analytical. Forensic Analytical is not able to assess the degree of hazard resulting from materials analyzed. Forensic Analytical reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. Any modifications that have been made to referenced test methods are documented in Forensic Analytical's Standard Operating Procedures Manual. Sample results have not been blank corrected. Quality control and sample receipt condition were acceptable unless otherwise noted.

10fZ



Forensic Analytical Laboratories, Inc.

# Analysis Request Form (COC)

Client Name & Address:	PO/Job#: 1306225 Date: 8/28/13							
Vista Environmental Con	Turn Around Time: Same Day (1Day / Day / 3Day / 4Day / 5Day							
2984 Teagarden Street San Leandro, CA 94577	Turn Around Time: Same Day   TDay   2Day   3Day   4Day   5Day     ID   PCM:   ID   NIOSH 7400A   ID   NIOSH 7400B   ID   Rotometer							
San Leanoro, CA 94577								
			🗍 PLM: 🕅 Stand	lard / 🗖	Point Count	100	0 / 🗗 CAR	B 435
Contact: Chris Burns			🗇 TEM Air: 🗇 A 🗇 TEM Bulk: 🖸		•			4
Phone: (510) 346-8860	Fax:	(888) 296-0271	🔲 TEM Water: 🖡	1 Potable	/ 🖸 Non-Po	table / 🗖	l Weight %	
		(000) 290-0271	TEM Microvac			·····		
E-mail: chrisburns@vista-	env.com &	& molli@vista-env.com	D IAQ Particle Identif	ication (1	TEM LAB)		J PLM Opa J Special Pi	
Site: County of Alameda C	3SA-Cher	ryland Community Cente	Metals Analysi		<u> </u>	NE A		
Site Location: 17482 Bosto	- 04 - 0-		Matrix:		HINT C	μ _ρ		
· · · · · · · ·	м ка., па	iyward, CA	Analytes:	Ph_	<b>D</b>			
Comments:					Report Via		🖥 E-Mail	🗗 Verbal
	Date /			]	FOR AIR SAM	APLES OF	NLY	Sample Area /
Sample ID	Time	Sample Location / D	escription	Туре	Time	Avg.	Total	Air
17400 - 13000 A	Black .			IA	On/Off	LPM	Time	Volume
17482-130824- HA 322-01	8/2413	Beige, Dryw	હ્યા (	P	·····			
17482-130924-		Beige, Dryw Gregni, Dryw	. (	P				
HA33-01		Grean, Uryu	/911	<u> </u>				
17402-130824- HA 34-01		White, Drywaii						
17492-130029-		11/2/2027	uh (a dia a) R					
HA 35-01		unie, war	s, Dase	 	····· - ··· · ·			· · ·
17492-130824- HA 36-01		White was	DE	<u>କ</u> ୍ତି   ସ				
17482-130024-			- <u>/</u> ¥1					
HA 37-01	/	Beice, Oran	Λ(C	সী				
17492-130824-		Por Pile	(aguit		·			
HA-38-01		blice, tartiern	(aami					
17400-130024-		Ginin Leva	mic	A 9 5				
1492-130924-		uniel,		A				
HA 40-01		WODA, Dou	<u>DR</u>	직 <u> </u>		1.		
17492-130924-		Reino INA	ne	A P				
Sampled By: $\gamma_L \rho_{R}$	V I	Date:		키	Time;			<u> </u>
UTRUST		2	urier Trop	)	Other:			
Relinquisted B			Relinquished	Bv:				
Date/Time			Date / Time:	7-				
	Date / Time: Received By:			Received By:				
Received By	, OA	b í			-			
Date / Time: 8-28-13 (4	(:30pm	Condition Acceptable?	τυ 1341-4		Date / Time:		1 <b>21</b>	<b>T</b> N1-
Condition Acceptable?	Yes 🖸 No		Condition Ac	ceptable!	ill res	🗖 No		

San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph: (510)887-8828 * (800)827-3274 / Fax: (510)887-4218 Los Angeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 90221 / Ph: (310)763-2374 * (888)813-9417 / Fax: (310)763-4450 Las Vegas Office: 6765 S. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030
# 20f2



Forensic Analytical Laboratories, Inc.

Client Name & Address:			PO/job#: 1306225 Date: 8/28/13					
Vista Environmental Cor	Turn Around Time: Same Day (1Day Day / 3Day / 4Day / 5Day							
2984 Teagerden Street San Leandro, CA 94577	,							
						_		
Contact:	·····		D PLM: D Stand		I.			8 435
Chris Burns			TEM Air: DA	HERA /   Ouantita	D Yamabe2 / tive / El Que	I D NIO	5H 7402 / 17 Chatlet	4
Phone: (510) 348-8860	fax;	(888) 296-0271	CI TEM Water: C CI TEM Microvac	I Potable	/ D Non-Po	table / ]	U Weight %	
	env.com	& malli@vista-anv.com	D IAQ Particle M D Particle Identif	Ication (1	TEM LAB)		PLM Ope	
Site: County of Alameda (	3SA-Che	rryland Community Cent	Metals Analysi			nt A	HA	· · · · · · · · · · · · · · · · · · ·
Site Location: 17482 Bosto			Matrix:		MAT C	Hip		
Comments:		JYWRIG, GA	Analytes:	75				
Comments:					Report Via	u: I Fax	C 6-Mail	🕅 Verbal
		[		<b></b>	FOR AIR SAU			Sample
Sample ID	Date / . Time	Sample Location / D	escription	Туре	Time On/Off	Avg.	Total	Area / Air Volume
17482-130024-	8/2413	Rosa (12002)	N	A	103 <b>1</b> 10			VORUME
HA 42-01		Brige Wass U	VILLOUS	¶] _ 기		<u>1</u>		
17482-130824- HA 43-01	$  \setminus  $	while was	WF	A 9 01				
17400-130824-	<u> </u>	1.8 (1.1.02)	<u>&gt; , 011</u>	A IP		+	<u> </u>	<u> </u>
HA 44-01	ļ	unity was	Dave, Hod	5		1		
7492-130024-		Reizo was (	egils Add	A T T				
1402-130924-		12 hits 10000 .	OF Ad					
HA 46-01 17492-130029-	f	Kine man		5	· · · · · · · · · · · ·	<b> </b>	<b> </b>	<b> </b>
HA 47-01		Gray, Patterne, (	Damic	직 기 기		-		
7402-130824-				IX.		<b> </b>	<u> </u>	
HA 48.		1/00 165	Sanolos	л С		<b></b>	f	<u>+</u> i
17490-130824-		VV C	····· ¥	Ā		<u></u>	<b></b>	
r A				ា			<u> </u>	
7489-130824-	<i> </i>			A P				
17492-130924-	┝━╋┥	· · · · · · · · · · · · · · · · · · ·				<b></b>	<u> </u>	
HA			- · · · · · .			<u> </u>		
		Date:	Alalia	ي بند ب	Time	L	<u> </u>	
Sampled By:         Output         Date:         Output         Time:           Shipped Via:         IF Fed ExID DHLID UPSID US Mail         ID CourierID Top OffID Other:         ID Other:								
			Relinquished	Ren				
		Date / Time:			Date / Time:			
Received By:					Received By:	···· ···		
Date / Time: 8-28-130	1:3pm	Date / Time:			Date / Time:			
Condition Acceptable? Cyres	O No	Condition Acceptable:	Yes DINO		Condition Acc	ogtable?	TYes	0 No

San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph: (S10)887-8828 * (800)627-3274 / Fax: (S10)887-4218 Los Angeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 90221 / Ph: (S10)763-2374 * (880)813-9417 / Fax: (S10)763-4450 Las Vegas Office: 6765 S. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030



(EPA Method 600/R-93-116, Visual Area Estimation)

Vista Environmental Consultants Project Manager 2984 Teagarden St. San Leandro, CA 94577					Client ID: Report Numb Date Received Date Analyzed Date Printed: First Reported	l: 08/28/ d: 08/29/ 08/29/	13 13 13
Job ID/Site: 1306225 - County of Alame Hampton Rd., Hayward, CA Date(s) Collected: 08/28/2013		erryland Commu	nity Center, 27	78	FALI Job ID: Total Samples Total Samples		: 4 4
Sample ID	Lab Numbe	Asbestos er Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer
<b>278-130824-HA01-01</b> Layer: Grey Cementitious Material Layer: Paint	11419861		ND ND				
Total Composite Values of Fibrous Comp Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-130824-HA02-01</b> Layer: Grey Cementitious Material	11419862		ND				
Total Composite Values of Fibrous Comp Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-130824-HA03-01</b> Layer: Black Cementitious Tar	11419863		ND				
Total Composite Values of Fibrous Comp Cellulose (Trace)	ponents:	Asbestos (ND)					
<b>278-130824-HA03-02</b> Layer: Black Cementitious Tar	11419864		ND				
Total Composite Values of Fibrous Comp Cellulose (Trace)	ponents:	Asbestos (ND)					

Lad I prover

Tad Thrower, Laboratory Supervisor, Hayward Laboratory

Note: Limit of Quantification ('LOQ') = 1%. 'Trace' denotes the presence of asbestos below the LOQ. 'ND' = 'None Detected'. Analytical results and reports are generated by Forensic Analytical Laboratories Inc. (FALI) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by FALI to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by FALI. The client is solely responsible for the use and interpretation of test results and reports requested from FALI. Forensic Analytical Laboratories Inc. is not able to assess the degree of hazard resulting from materials analyzed. FALI reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. All samples were received in acceptable condition unless otherwise noted. Forensic Analytical Laboratories, inc.

×.

----

4

					•			
Client Name & Address:			PO/job#: 130	6225		Dat	ie: 828	113
Vista Environmental Con 2984 Teagarden Street	isulting, In	iC.	Turn Around Time: Same Day (1Day 2Day / 3Day / 4Day / 5Day					
San Leandro, CA 94577			NIOSH 7400A / D NIOSH 7400B D Rotometer					
				<u> </u>			-	
Contact: Chris Burns			Den Air: DAHERA / D Yamate2 / D NIOSH 7402 D TEM Air: D AHERA / D Yamate2 / D NIOSH 7402 D TEM Bulk: D Quantitative / D Qualitative / D Chatfield					
Phone: (510) 346-8860	Phone: (510) 346-8860 Fax: (888) 296-0271			☐ TEM Water: ☐ Potable / ☐ Non-Potable / ☐ Weight % ☐ TEM Microvac: ☐ Qual(+/-) / ☐ D5755(str/area) / ☐ D5756(str/mass)				
E-mail: chrisburns@vista-e	env.com 8	k molli@vista-env.com	¦□ IAQ Particle k □ Particle Identit	fication (	rem lab)		PLM Opar Special Pr	
	SSA-Cher	ryland Community Cente	☐ Metals Analys Matrix:	is: Metho	od: '			
Site Location: 278 Hampton	n Rd., Hay	/ward, CA	Analytes:					
Comments:			I	١	Report Via		🖸 E-Mail	🖸 Verbal
	Date /	· · ·			FOR AIR SAM	APLES ON	NLY .	Sample Area /
Sample ID	Time	Sample Location / D	escription	Туре	Time On/Off	Avg. LPM	Total Time	Air
278-130824 - HAD1-01	<i>षे2</i> थे(-3	PARKET/COncrebe	Unde/fr.					
273-130824-		Concrete G	1A-2	- [A] - [A] - ] - ]				
HA02-01 278-130824- HA03-01		As Chatt-B	actor.					•
278-132024-			-4-2	IA IP	· 		· ·	
HA03-02	A							
		4 Sample	٢	I IC				
		/				-		
							•	
Sampled By: Arther R.	7.0	Date	abolia	ר <u>י</u> ן ר	Time:			
		UPS 🗇 US Mail 🗇 Con	014019	Off o	Other:			
Relinquished By		Relinquished By:			Relinquished	By:		
Date / Time:	- 7	Date / Time:			Date / Time:			
Received By:	- 6/2	Received By:			Received By:			
Date/Time: 8-28-13(	CI:200	Date / Time:			Date / Time:			
Condition Acceptable? The	No V	Condition Acceptable?	IYes 🗍 No		Condition Acc	ceptable?	🗇 Yes	🗆 No

San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph; (510)887-8828 * (800)827-3274 / Fax: (510)887-4218 Los Angeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 90221 / Ph: (310)763-2374 * (888)813-9417 / Fax: (310)763-4450 Las Vegas Office: 6765 5. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030



# Metals Analysis of Paints

Vista Environmental Con Project Manager	sultants					Client ID: Report Number:	L1161 M142261
Project Manager						-	
2984 Teagarden St.						Date Received:	08/28/13
					]	Date Analyzed:	08/29/13
San Leandro, CA 94577					]	Date Printed:	08/29/13
					]	First Reported:	08/29/13
Job ID / Site: 1306225, Rd., Hayw	•	A-Cherryland Co	ommunity C	enter, 278 H	lampton	FALI Job ID:	L1161
Date(s) Collected: 8/24/	13				,	Total Samples Su	bmitted: 1
					,	Total Samples Ar	alyzed: 1
Sample Number	Lab Number	Analyte	Result	Result Units	Reportin Limit*	-0	Iethod eference
278-130824-HA04-01	30474693	Pb	0.018	wt%	0.006	EPA 3	8050B/7420

* The Reporting Limit represents the lowest amount of analyte that the laboratory can confidently detect in the sample, and is not a regulatory level. The Units for the Reporting Limit are the same as the Units for the Final Results.

amele Sile

Daniele Siu, Laboratory Supervisor, Hayward Laboratory

Analytical results and reports are generated by Forensic Analytical at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by Forensic Analytical to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by Forensic Analytical. The client is solely responsible for the use and interpretation of test results and reports requested from Forensic Analytical. Forensic Analytical is not able to assess the degree of hazard resulting from materials analyzed. Forensic Analytical reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. Any modifications that have been made to referenced test methods are documented in Forensic Analytical's Standard Operating Procedures Manual. Sample results have not been blank corrected. Quality control and sample receipt condition were acceptable unless otherwise noted.

Climat Name & Address			PO/Job#:			Date		
Client Name & Address:	aultina Ina		PO/Job#: 1306225 Date: 02013				213	
Vista Environmental Con 2984 Teagarden Street	sulang, inc.		Turn Around Time: Same Day (IDay / 2Day / 3Day / 4Day / 5Day					
San Leandro, CA 94577			PCM: D NIOSH 7400A / D NIOSH 7400B Rotometer					
			🗂 PLM: 🗂 Stand	lard / 🗖	Point Count 4	00 - 1000	) / 🗂 CARE	435
Contact: Chris Burns			TEM Air: D Al	Quantitat	ive / 🗖 Qual	itative /	🗂 Chatfield	
Phone: (510) 346-8860	Phone: (510) 346-8860 Fax: (888) 296-0271			i Potable : 🗖 Qua	/ 🕮 Non Pol I(+/-) / 🛅 D5	able / 11 755(str/arc	ea) / 🗂 D5	756(str/mass)
E-mail: chrisbums@vista-	env.com & r	molli@vista-env.com	<ul> <li>IAQ Particle Id</li> <li>Particle Identif</li> </ul>	ication (1	EM LAB)		3 PLM Opar 3 Special Pr	
Site: County of Alameda C	SSA-Cherry	land Community Cente	Metals Analysi Matrix:		<u> </u>	ME AN	7	
Site Location: 278 Hampton	n Rd., Hayv	vard, CA	Analytes:	Hair 10	<u>L</u> [		<b>`</b>	
Comments:	·		· · ····		Report Via		DE-Mail	(1 Verbal
	Data		·		FOR AIR SAM	APLES ON	ILY	Sample Area /
Sample ID	Date / Time	Sample Location / D	escription	Туре	Time On/Olf	Avg. LPM	Total Time	Air Volume
a78-130824-	0/24/13	417 D =	6 1	A				
HA 04-01		While Parket,	and	c				
· · · · · ·				A P		-		
· · · · · · · · · · · · · · · · · · ·	<u></u>			C A				
		· .		P C	·			
				A				
		·	·····	C A			·	-
				P				
······································				A				
				P C				
		· • · · · · · · · · · · · · · · · · · ·		Ă P				
				1 C				
				A P	 			
				A		+		
	1			P C				
				A P C				
Sampled By: MRS BURNS Date: 020(13 Time:								
Shipped Via:								
Relinquistic		Relinquished By:	- 1		Relinquished	By:		
Vate / Time: Date / Time:					Date / Time:			
Received By Jun	5	Received By:			Received By:			
Date / Time: 8.28-12	1:30 pm	Date / Time:			Date / Time:			
Condition Acceptable? Types E No Condition Acceptable?			🗇 Yes – 🗍 No		Condition Ac	ceptable?	Ö Yes	🖸 No

San Francisco Office: 3777 Depot Road, Suite 409, Hayward, California 94545-2761 / Ph: (510)887-8828 * (800)827-3274 / Fax: (510)887-4218 Los Angeles Office: 2959 Pacific Commerce Drive, Rancho Dominguez, California 9022 t / Ph: (310)763-2374 * (888)813-9417 / Fax: (310)763-4450 Las Vegas Office: 6765 S. Eastern Avenue, Suite 3, Las Vegas, Nevada 89119 / Ph: (702)784-0040 / Fax: (702)784-0030

-

**APPENDIX C - Survey Team Certifications** 

#### State of California Division of Occupational Safety and Health

#### **Certified Asbestos Consultant**

#### **Christopher Robert Burns**

	Name Certification No. 92-0224					
	Expires on07/10/14					
1	This certification was issued by the Division of					

Occupational Safety and Health as authorized by Sections 7180 et seq. of the Business and Professions Code.



State of California Division of Occupational Safety and Health Certified Site Surveillance Technician

### Luis Javier Rocha



Name Certification	No. 02-3244
Expires on .	02/19/14
This certification was iss Occupational Safety and	sued by the Division of I Health as authorized by



**APPENDIX D - Floor Plans/Drawings** 







			A CONTROLOGICAL
-0.006 17482-130824-HA45-01 Wt% PAINT, BEIGE, WOOD -0.006 17482-130824-HA46-01 Wt% PAINT, WHITE, WOOD	0.009 17482-130824-HA44-01 wt% PAINT, WHITE, WOOD 0.079 17482-130824-HA35-01 wt% PAINT, WHITE, WOOD 0.006 17482-130824-HA36-01 wt% PAINT, WHITE, WOOD 0.008 17482-130824-HA34-01 wt% PAINT, WHITE, DRYWALL	1.9 17482-130824-HA42-01 wt% PAINT, BEIGE, WOOD	VISTA ENVIRONMENTAL CONSULTING CONSULTING 2984 TEACARDEN STREET SAN LEANDRO, CA 94577 510-346-8860









NOTE: and and and and and and and and	2984 TEAGARDEN STREET SAN LEANDRO, CA 94577 510-346-8860
---------------------------------------------------------------	----------------------------------------------------------------

# Appendix E

Noise Monitoring Results























# Appendix F

Traffic Impact Analysis





# HEXAGON TRANSPORTATION CONSULTANTS, INC.

# **Cherryland Community Center**

Draft Traffic Impact Analysis



...

ĥ

Prepared for:

MIG, Inc.

February 3, 2014





•

### Hexagon Transportation Consultants, Inc.

Hexagon Office: 111 W. St. John Street, Suite 850 San Jose, CA 95113 Hexagon Job Number: 14JH Phone: 408.971.6100 Document Name: Cherryland_Community_Center_DTIA_Feb_3.doc

#### San Jose · Gilroy · Pleasanton · Phoenix

#### www.hextrans.com

Areawide Circulation Plans Corridor Studies Pavement Delineation Plans Traffic Handling Plans Impact Fees Interchange Analysis Parking Transportation Planning Traffic Calming Traffic Control Plans Traffic Simulation Traffic Impact Analysis Traffic Signal Design Travel Demand Forecasting

# **Table of Contents**

Execu	utive Summary	ii
1.	Introduction	1
2.	Existing Conditions	6
3.	Baseline Conditions	13
4.	Baseline Project Conditions	16
	2035 Cumulative Conditions	
6.	Conclusions	24

# Appendices

Appendix A:	Traffic Counts
Appendix B:	Level of Service Calculations
Appendix C:	Parking Memorandum

### **List of Tables**

Table ES-1 Inte	tersection Level of Service Summaryiii
-----------------	----------------------------------------

Table 1	Signalized Intersection Level of Service Definitions	
Table 2	Existing Intersection Levels of Service	
Table 3	Intersection Levels of Service Under Background Conditions	
Table 4	Cherryland Community Center Project Trip Generation Estimates	
Table 5	Intersection Levels of Service Under Background Project Conditions	
Table 6	Intersection Levels of Service Under 2035 Cumulative Conditions	

## List of Figures

Figure 1	Site Location and Study Intersections	
Figure 2	Proposed Cherryland Community Center Site Plan	
Figure 3	Existing Transit Service	
Figure 4	Existing Lane Configurations	
Figure 5	Existing Traffic Volumes	
Figure 6	Near Term No Project Traffic Volumes	
Figure 7	Near Term Project Traffic Volumes	
Figure 8	2035 Cumulative Project Traffic Volumes	
-		



# **Executive Summary**

This report presents the results of the traffic impact analysis conducted for the Cherryland Community Center. The purpose of the traffic study was to identify any traffic-related impacts that would result from the proposed community center. The project is located at 278 Hampton Road in the community of Cherryland in unincorporated Alameda County. The proposed community center involves construction of a new building and demolition of single family residence. The proposed project would generate less than 100 peak hour trips and because of this an analysis of Congestion Management Program (CMP) facilities is not required. According to the proposed site plan, the project would have a single driveway on Hampton Road.

### **Project Trip Estimates and Traffic Volumes**

Project trips were added to the baseline traffic volumes to represent baseline (background) traffic conditions with implementation of the project. The cumulative traffic conditions associated with year 2035 were analyzed both without and with the project using the Alameda County Transportation Model. This model is maintained by the Alameda County Transportation Commission.

### **Project Intersection Analysis**

The results of the intersection level of service analysis are summarized in Table ES-1. The results show that the two signalized study intersections would operate at acceptable levels of service under baseline (background) project conditions.

The results show that the following signalized study intersection would operate at unacceptable levels of service under Cumulative and Cumulative Project conditions:

Mission Boulevard and Hampton Road

*Mission Boulevard and Hampton Road.* The average delay at the intersection of Mission Boulevard and Hampton Road under the cumulative project conditions is not forecasted to increase compared to the average delay under cumulative conditions, therefore this result does not constitute a significant impact.



# Table ES- 1Intersection Level of Service Summary

				Background							Cumulative					
		Existing		No Project		with Project			No Project		With Project					
	Peak	Avg		Avg		Avg		Incr. In	Incr. In	Avg	N	Avg		Incr. In	Incr. In	
Intersection	Hour	Delay	LOS	Delay	LOS	Delay	LOS	Crit. Delay	Crit. V/C	Delay	LOS	Delay	LOS	Crit. Delay	Crit. V/C	
Meekland Ave & Hampton Rd	AM	7.8	В	7.8	В	7.8	В	0.2	0.006	8.1	В	8.2	В	0.2	0.006	
	PM	7.4	В	7.4	В	7.5	В	0.3	0.008	10.2	В	10.3	В	0.3	0.008	
Misson Blvd & Hampton Rd	AM	16.6	С	17.0	С	17.0	С	0.0	0.003	132.5	F	132.1	F	-0.6	0.005	
	PM	15.8	С	15.9	С	16.0	С	0.1	0.005	30.6	D	31.2	D	3.3	0.006	

### **Site Access and Site Circulation**

According to the proposed site plan, the Cherryland Community Center would have vehicular access at a single driveway on Hampton Road. Overall, the site plan exhibits good on-site circulation for vehicles. Based on the site plan, the parking would be 90-degree head-in parking.

The one driveway on Hampton Road would have a throat length of approximately 20 feet. Although limited in terms of accommodating stacked cars leaving the lot, the traffic volumes on Hampton Road are relatively low. According to the site plan, the 19-space parking lot located adjacent to the building has a dead-end aisle. This means that vehicles need to turn around within the aisle if they have not located a vacant space, in order to exit the parking lot. If turnover on the site is not high, this is generally not an issue

### **On-Site Parking**

The estimated parking supply of 80 spaces falls slightly short of the estimated 86 spaces necessary. Since there is on-street parking outside the two-block perimeter that was included in the supply estimates, the likely outcome is that some visitors of the community center may need to park 2 blocks away or more. Although there is no empirical research on the sharing of parking opportunities for the two uses (Meek Park and the proposed community center), it is possible that some users of the community center will overlap with those visiting the park. This aspect of shared parking was not assumed in the estimates, so the 86 parking spaces for the community center are potentially a conservative estimate. Also the Hayward Area Recreation District, which will coordinate activities at the proposed community center, anticipates coordinating activities between the park uses and the community center such that major activities do not overlap. This aspect will significantly improve the chances of providing sufficient available parking for the community center.

### **Other Transportation Issues**

The proposed community center would not have a significant adverse effect on existing transit, pedestrian, or bicycle facilities in the study area.

# 1. Introduction

This report presents the results of the traffic impact analysis conducted for the proposed Cherryland Community Center. The purpose of the traffic study was to identify any traffic-related impacts that would result from the proposed project. The project is located at 278 Hampton Road near the intersection of Boston Road. The project is located in the community of Cherryland in unincorporated Alameda County. The project involves construction of a new building and demolition of a residence.

According to the proposed site plan, the project would have one driveway on Hampton Road. The project site and the surrounding study area are shown on Figure 1. The proposed site plan is show on Figure 2.

### Scope of Study

This study was conducted for the purpose of identifying the potential traffic impacts related to the project. The impacts of the project were evaluated following the standards and methodologies consistent with Alameda County and the City of Hayward. The following study intersections were analyzed for potential impacts:

#### **Study Intersections**

Meekland Avenue and Hampton Road

Mission Boulevard and Hampton Road

In summary, the study includes an analysis of 2 signalized intersections in the vicinity of the project site. Traffic conditions at the intersections were analyzed for the weekday AM and PM peak hours of traffic. The AM peak hour of traffic is generally between 7:00 and 9:00 AM, and the PM peak hour is typically between 4:00 and 6:00 PM. It is during these periods that the most congested traffic conditions occur on an average day.

Traffic conditions were evaluated for the following scenarios:

- Scenario 1: Existing Conditions. Existing traffic volumes were obtained from recent traffic counts.
- **Scenario 2:** Near Term No Project Conditions. Near term traffic volumes without implementation of the project were estimated by applying an annual growth rate of 1 percent to existing traffic volumes. According to Alameda County staff, there are no approved or pending projects in the study area. Thus, applying an annual growth rate of 1 percent would be acceptable for the purpose of this traffic study to account for the development of potential projects over the next two years.





LEGEND

= Project Site Location

Study Intersection

Figure 1 Project Location and Study Intersections









- **Scenario 3:** Near Term Project Conditions. New peak hour trips generated by the project were estimated based on, *The ITE Trip Generation Manual, Ninth Edition.* The resulting project trips were added to Near Term No Project traffic volumes to represent future near term traffic conditions with implementation of the project (hereafter called *near term project traffic volumes*). The near term project traffic volumes were then assigned to the surrounding roadway network.
- **Scenario 4:** 2035 Cumulative Conditions. Additional trips generated by potential future developments in the project area beyond near term were estimated by using the Alameda County Transportation Model, maintained by the Alameda County Transportation Commission. The resulting 2035 cumulative project traffic volumes for the roadways were manipulated to yield 2035 cumulative project traffic volumes for the study intersections.

### Methodology

This section presents the methods used to determine the traffic conditions for each scenario described above. It includes descriptions of the data requirements, the analysis methodologies, and the applicable level of service standards.

### **Data Requirements**

The data required for the analysis were obtained from new traffic counts, field observations, Alameda County and the Hayward Area Recreation District. The following data were collected from these sources:

- Existing traffic volumes
- Lane configurations
- Bus route data

#### Analysis Methodologies and Level of Service Standards

Traffic conditions at the study intersections were evaluated using level of service (LOS). *Level of Service* is a qualitative description of operating conditions ranging from LOS A, or free-flow conditions with little or no delay, to LOS F, or jammed conditions with excessive delays. The various analysis methods are described below.

#### **Signalized Intersections**

All of the signalized study intersections are located in unincorporated Alameda County and are therefore subject to the Alameda County level of service standards. For this analysis, it was assumed that the Alameda County level of service standard are consistent with those of the City of Hayward. The City of Hayward level of service standard for signalized intersections is LOS D or better. The level of service methodology used for this study is TRAFFIX, based on the *1994 Highway Capacity Manual* (HCM) operations method for signalized intersections. The 1994 HCM method evaluates signalized intersection operations on the basis of average stopped delay time for all vehicles at the intersection. Thus, the average delay and corresponding level of service reported for each signalized intersection analyzed for this traffic study are based on the average stopped delay at the intersection. The correlation between average stopped delay and level of service is shown in Table 1.

### **Report Organization**

The remainder of this report is divided into four chapters. Chapter 2 describes existing conditions in terms of the existing roadway network, transit service, and existing bicycle and pedestrian facilities. Chapter 3 presents the intersection operations under baseline conditions without implementation of the project. Chapter 4 describes the method used to estimate project traffic and project-related impacts on the transportation system. Chapter 5 presents the conclusions of the transportation analysis.


Level of Service	Description	Average Stopped Delay Per Vehicle (Sec.)
А	Operations with very low delay occurring with favorable progression and/or short cycle lengths.	5.0 or less
В	Operations with low delay occurring with good progression and/or short cycle lengths.	5.1 to 15.0
С	Operations with average delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures begin to appear.	15.1 to 25.0
D	Operations with longer delays due to a combination of unfavorable progression, long cycle lengths, or high V/C ratios. Many vehicles stop and individual cycle failures are noticeable.	25.1 to 40.0
E	Operations with high delay values indicating poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences. This is considered to be the limit of acceptable delay.	40.1 to 60.0
F	Operation with delays unacceptable to most drivers occurring due to oversaturation, poor progression, or very long cycle lengths.	Greater than 60.0

# Table 1Signalized Intersection Level of Service Definitions

Source: Transportation Research Board, Highway Capacity Manual, Special Report 209, 1994, pp 9-4, 5.

# 2. Existing Conditions

This chapter describes the existing conditions for all the major transportation facilities in the vicinity of the site, including the roadway network, transit service, and bicycle and pedestrian facilities.

#### **Existing Roadway Network**

Regional access to the project site is provided via I-580 and I-238. Local access to the site is provided by Hampton Road and Meekland Avenue. These facilities are described below.

Interstate 238 (I-238) is an east/west freeway providing regional access between I-880 and I-580. I-238 is a sixlane freeway. Full interchanges are provided at I-880 and at I-580.

Hampton Road/Mattox Road is a two-lane undivided east-west minor arterial and provides direct access to the project site. There are no bike lanes on Hampton Road. Access to the project is provided via a single driveway on Hampton Road. On the east side of Mission Boulevard the street name changes to Mattox Road.

*Mission Boulevard/East 14th Street* is a north-south divided major arterial with two lanes in each direction. North of Hampton Road, the street name changes to East 14th Street, and extends northward into San Leandro. There are no bike lanes on Mission Boulevard in the vicinity of the project.

*Meekland Avenue* is a north-south undivided minor arterial with one lane of travel in each direction. Depot Road begins at Cabot Boulevard in an industrial area of Hayward, and extends eastward where it transitions into Cathy Way at its intersection with Hesperian Boulevard. Crosswalks are provided at one Community center driveway on Depot Road and at Hesperian Boulevard. There are no bike lanes on Depot Road. Access to Community center is provided via four driveways on Depot Road.

#### **Existing Bicycle and Pedestrian Facilities**

According to the Alameda County Bicycle Master Plan, there are limited existing bicycle facilities in the immediate project vicinity. There are existing bike lanes on Meekland Avenue. Class I bike lanes are proposed for Western Boulevard, which runs parallel to Mission Boulevard and is approximately two blocks east of the project. A class I bike facility is a multi-use path.

The proposed class I bike facility would greatly improve the connectivity of the currently limited network of bicycle facilities.

Pedestrian facilities in the study area consist primarily of a continuous network of sidewalks along the previously described local roadways. Crosswalks with pedestrian push buttons and signal heads are provided at the major



intersections in the project area. Existing pedestrian traffic in the project area primarily is generated by visitors of Meek Park and local residents walking to and from the park, bus stops, and nearby schools on Meekland Avenue.

## **Existing Transit Service**

Existing transit service to the study area is provided by Alameda-Contra Costa Transit District (ACTransit). The project is served by local bus lines 32, 93 and 99. The line 32 bus stops on Meekland Avenue near the intersection of Hampton Road. Line 32 provides service between BART Bayfair station and downtown Hayward and has 60-minute headways on weekends. On Mission Boulevard, ACTransit operates lines 93 and 99. Line 93 with headways of 60 minutes on weekends, provides service between the BART Bayfair station and Meekland Avenue. Line 99 provides service between BART Bayfair station and operates with 30 minute weekend headways.



= Project Site LocationStudy Intersection

Bus Route 32

Bus Route 93

Bus Route 99

HEXAGON

Figure 3 Existing Transit Service



## **Existing Intersection Lane Configurations**

The existing lane configurations at the study intersections were collected in the field. The existing intersection lane configurations are shown on Figure 4.

#### **Existing Traffic Volumes**

Existing AM and PM peak-hour traffic volumes were obtained from new manual turning-movement counts at the study intersections. The existing peak-hour intersection volumes are shown on Figure 5. The traffic count data are included in Appendix A.

#### **Existing Intersection Levels of Service**

The results of the intersection level of service analysis under existing conditions are summarized in Table 2. The results show that the following signalized study intersections currently operate at an unacceptable level of service:

- Meekland Avenue and Hampton Road LOS during the AM peak hour
- Mission Boulevard and Hampton Road LOS during the PM peak hour

#### Cherryland Community Center TIA





#### LEGEND

= Project Site Location

= Study Intersection



#### Figure 4 **Existing Lane Configurations**



#### Cherryland Community Center TIA





= Study Intersection

XX(XX) = AM(PM) Peak-Hour Traffic Volumes

\sub Hexagon

#### Figure 5 **Existing Traffic Volumes**



#### Table 2

#### Existing Intersection Levels of Service

Intersection	Peak Hour	Avg Delay	LOS
Meekland Ave & Hampton Rd	AM	7.8	В
	PM	7.4	В
Misson Blvd & Hampton Rd	AM	16.6	С
	PM	15.8	С
Bold indicates a substandard level of service.			
Bold	indicates a	significant proje	ct impact.

#### **Observed Existing Traffic Conditions**

Traffic conditions were observed in the field in order to identify existing operational deficiencies and to confirm the accuracy of calculated levels of service. The purpose of this effort was (1) to identify any existing traffic problems that may not be directly related to intersection level of service, and (2) to identify any locations where the level of service calculation does not accurately reflect level of service in the field.

Overall the study intersections operated well during both the AM and PM peak hours, and the level of service analysis appears to accurately reflect actual existing traffic conditions.

# 3. Baseline Conditions

This chapter describes near-term background traffic conditions without implementation of the Cherryland Community Center project, and describes the procedures used to estimate baseline or near term no project traffic volumes.

#### Future Roadway Network

It is assumed in this analysis that the transportation network under near term no project conditions, including roadways and intersection lane configurations, would be the same as that described under existing conditions.

#### **Near Term No Project Traffic Volumes**

Near term traffic volumes without implementation of the project were estimated by applying an annual growth rate of 1 percent to existing traffic volumes, over a two-year period. An annual growth rate of 1 percent is commonly used to estimate traffic growth resulting from future developments. This approach to determine potential growth resulting from future developments in the project area has been used on past projects and endorsed by staff in the City of Hayward and is subject to review and approval by Alameda County staff. The approach aligns with the general concept that there are no approved projects in the study area. Thus, the 1 percent annual growth was used to account for approval of any projects in the near future. The near term no project peak hour traffic volumes are shown on Figure 9.

#### **Near Term No Project Intersection Levels of Service**

The results of the intersection level of service analysis under near term no project conditions are summarized in Table 3. The results show that the two signalized study intersections would operate at an acceptable level of service under near term no project conditions.

The level of service calculation sheets are included in Appendix B.



#### **Cherryland Community Center TIA**





= Project Site Location

= Study Intersection

XX(XX) = AM(PM) Peak-Hour Traffic Volumes

#### Figure 6 Near-Term No Project Traffic Volumes





#### Table 3

#### Intersection Levels of Service Under Background Conditions

	Peak	Count	Exist Avg	ing	Background Avg		
Intersection	Hour	Date	Delay	LOS	Delay	LOS	
Meekland Ave & Hampton Rd	AM	01/00/00	7.8	В	7.8	В	
	PM	01/00/00	7.4	В	7.4	В	
Misson Blvd & Hampton Rd	AM	01/00/00	16.6	С	17.0	С	
	PM	01/00/00	15.8	С	15.9	С	
Bold indicates a substandard level of se	rvice.						
Bold		nificant project impact.					

# 4. Baseline Project Conditions

This chapter describes how near term traffic conditions would be altered by implementation of the Cherryland Community Center (hereafter called *project*). It includes a description of the method by which project traffic was estimated, as well as any impacts caused by the project. Baseline or near term project conditions were evaluated relative to near term conditions without the project in order to determine potential project impacts. The effects of the proposed project on vehicular access, on-site circulation and parking are then described. The chapter is concluded with a discussion of the effects of the project on transit, bicycle and pedestrian facilities in the project area.

## **Significant Impact Criteria**

Significance criteria are used to establish what constitutes an impact. For this analysis, the criteria used to determine impacts on intersections are based on Alameda County Level of Service standards.

#### Alameda County Definition of Significant Intersection Impacts

The project is said to create a significant adverse impact on traffic conditions at a signalized intersection in unincorporated Alameda County if for either peak hour:

- 1. The level of service at the intersection degrades from an acceptable LOS D or better under baseline conditions to an unacceptable LOS E or F under project conditions,
- 2. The level of service at the intersection degrades from a LOS E under baseline conditions to an unacceptable LOS F under project conditions, or
- **3.** The level of service at the intersection is an unacceptable LOS F under baseline conditions and the project causes the delay to increase by four (4) or more seconds.

A significant impact by Alameda County standards is said to be satisfactorily mitigated when measures are implemented that would restore intersection level of service to an acceptable LOS D or better, unless the cost of mitigating an intersection back to LOS D is prohibitive. Alameda County will ultimately make this determination.

#### **Transportation Network Under Project Conditions**

It is assumed in this analysis that the transportation network under project conditions, including roadways and intersection lane configurations, would be the same as that described under near term no project conditions.



#### **Project Trip Estimates and Traffic Volumes**

New trips generated by the Cherryland Community Center project were estimated by applying trip generation rates from the, *"ITE Trip Generation Manual", Ninth Edition.* Based on the average trip rates of community centers included in the survey, the project would generate 36 AM peak hour trips and 48 PM peak hour trips. Based on the average inbound/outbound splits that were surveyed, the project would produce 24 inbound and 12 outbound trips during the AM peak hour, and 27 inbound and 21 outbound trips during the PM peak hour. The trip generation estimates are presented below in Table 4.

#### Table 4

#### **Cherryland Community Center Project Trip Generation Estimates**

		AM Peak H	our			PM Peak H	lour	
Square Feet (in	Peak Hour				Peak Hour			
Thousands)	Rate	In	Out	Total	Rate	In	Out	Total
17.508	2.05	24	12	36	2.74	27	21	48

Project trips were added to the Near Term No Project traffic volumes to represent Near Term Project traffic conditions with implementation of the project (hereafter called near term project traffic volumes). Figure 10 shows near term project traffic volumes at the study intersection locations.

#### **Project Intersection Analysis**

The results of the intersection level of service analysis under near term project conditions are summarized in Table 5. The results show that the two signalized study intersections would operate at acceptable levels of service under near term project conditions.

#### Table 5

#### Intersection Levels of Service Under Background Project Conditions

	Backg	round	und + Project			
Peak Hour	Avg Delay	LOS	Avg Delay	LOS	Incr. In Crit. Delay	
AM	7.8	В	7.8	В	0.2	
PM	7.4	В	7.5	В	0.3	
AM	17.0	С	17.0	С	0.0	
PM	15.9	С	16.0	С	0.1	
	tes a sic	nificant	project ir	npact.		
	Hour AM PM AM PM	Peak Avg Hour Delay AM 7.8 PM 7.4 AM 17.0 PM 15.9	HourDelayLOSAM7.8BPM7.4BAM17.0CPM15.9Cervice.	PeakAvgAvgHourDelayLOSDelayAM7.8B7.8PM7.4B7.5AM17.0C17.0PM15.9C16.0ervice.FrankFrank	PeakAvgAvgHourDelayLOSAM7.8BPM7.4BAM17.0CPM15.9C16.0C	Peak         Avg         Avg         Incr. In           Hour         Delay         LOS         Play         LOS         Crit. Delay           AM         7.8         B         7.8         B         0.2           PM         7.4         B         7.5         B         0.3           AM         17.0         C         17.0         C         0.0           PM         15.9         C         16.0         C         0.1



#### **Cherryland Community Center TIA**





= Study Intersection

\sub Hexagon

XX(XX) = AM(PM) Peak-Hour Traffic Volumes

#### Figure 7 Near-Term with Project Traffic Volumes



#### **Site Access and Site Circulation**

According to the proposed site plan, the Cherryland Community Center would have vehicular access at a single driveway on Hampton Road. Overall, the site plan exhibits good on-site circulation for vehicles. Based on the site plan, the parking would be 90-degree head-in parking.

The one driveway on Hampton Road would have a throat length of approximately 20 feet. Although limited in terms of accommodating stacked cars leaving the lot, the traffic volumes on Hampton Road are relatively low. According to the site plan, the 19-space parking lot located adjacent to the building has a dead-end aisle. This means that vehicles need to turn around within the aisle if they have not located a vacant space, in order to exit the parking lot. If turnover on the site is not high, this is generally not an issue

## **On-Site Parking**

The site plan shows that 19 parking spaces will be provided in a parking lot accessed from Hampton Road. In addition, as part of this project, the existing parking lot at Meek Park will be expanded to a total of 89 spaces. According to a parking space occupancy survey completed for this study in September and October of 2013, the Meek Park parking lot was approximately 63 percent at capacity on average, by approximately 4 PM on a typical weekend day. This average occupancy was based on the existing 56-space (approximate) lot for Meek Park. A detailed parking memorandum is contained in Appendix C. The proposed project includes a plan to expand the Meek Park parking lot from 56 spaces to 89 spaces. In addition, there is available on-street parking. Based on the estimate of parking demand for the community center, approximately 86 additional spaces would be required (Source: ITE Parking Generation Manual). The estimated parking supply is as follows:

- The proposed community center parking facility would provide a total of 19 parking spaces,
- A total of 33 additional spaces are proposed for the Meek Park parking lot, and
- Approximately 28 spaces on average would be available of existing parking (lot and on-street spaces).

Based on these factors the estimated parking supply is approximately 80 spaces. This proposed parking supply falls slightly short of the estimated 86 necessary. Since there is on-street parking outside the two-block perimeter that was included in these estimates, the likely outcome is that some visitors of the community center may need to park 2 blocks away or more. Although there is no empirical research on the sharing of parking opportunities for the two uses (Meek Park and the proposed community center), it is possible that some users of the community center will overlap with those visiting the park. This aspect of shared parking was not assumed in the estimates, so the 86 parking spaces for the community center are potentially a conservative estimate. Also the Hayward Area Recreation District, which will coordinate activities at the proposed community center, anticipates coordinating activities between the park uses and the community center such that major activities do not overlap. This aspect will significantly improve the chances of providing sufficient available parking for the community center.

#### **Other Transportation Issues**

#### **Transit Facilities**

The proposed community center will be served by ACTransit bus lines on Meekland Avenue and Mission Boulevard, but there are no routes serving Hampton Road. Route 32 on Meekland Avenue provides service between BART Bayfair station and downtown Hayward and has 60-minute headways on weekends. On Mission Boulevard, routes 93 and 99. Line 93 with headways of 60 minutes on weekends, provides service between the BART Bayfair station and Meekland Avenue. Line 99 provides service between BART Bayfair station and BART Fremont station, and operates with 30 minute weekend headways. New transit riders resulting from the project are not expected to be significant, in particular due to the distance of nearby transit. Thus, no improvements to the existing transit service would be necessary as a result of the project.



#### **Pedestrian Facilities**

Pedestrian traffic primarily would be generated by local residents walking to and from the proposed community center, bus stops, and Meek Park. All of the roadways in the project area currently have sidewalks on both sides of the street, with crosswalks and pedestrian push buttons and signal heads at the major intersections. The extensive network of sidewalks within the study area would continue to provide users of the community center with a safe connection between the project and other surrounding land uses in the area.

#### **Bicycle Facilities**

As described in the Existing Conditions chapter, there are very few bicycle facilities in the project area. There are no proposed bike lanes as part of this project. The project is not expected to generate a significant number of additional bicycle trips. Bicyclists will share the road with vehicular traffic. Since the proposed project would have a relatively small effect on the total bicycle trips in the study area, and forecast traffic volumes on Hampton Road are relatively low, no improvements to bicycle facilities would be necessary as a result of the project.

In summary, the proposed project would not have an adverse effect on the existing transit, pedestrian or bicycle facilities in the study area.



# 5. 2035 Cumulative Conditions

This chapter describes 2035 Cumulative traffic conditions with implementation of the Cherryland Community Center project, and describes the procedure used to determine 2035 Cumulative traffic volumes. It is assumed in this analysis that the transportation network under 2035 Cumulative conditions, including roadways and intersection lane configurations, would be the same as that described under Near Term Project conditions.

#### **2035 Cumulative Traffic Volumes**

Additional trips generated by potential future developments in the project area, beyond the near term horizon, were estimated by utilizing 2035 forecast data from the Alameda County Transportation Model (ACTM). The ACTM is maintained by the Alameda County Transportation Commission (ACTC) and includes models of AM and PM peak hour traffic. Review of the input land use forecasts to the transportation model indicated that in all probability, the county's forecast assumed the community center project. Therefore, the 2035 traffic volumes for the cumulative without project scenario were estimated by subtracting the community center project trips from the 2035 forecast volumes. The resulting 2035 cumulative traffic volumes, both with and without the project were then used to generate 2035 forecast turn movements manually. 2035 cumulative project traffic volumes are shown on Figure 11.

#### 2035 Cumulative Intersection Levels of Service

The results of the intersection level of service analysis under 2035 Cumulative conditions are summarized in Table 7. The results show that the following signalized study intersection would operate at an unacceptable level of service under 2035 Cumulative conditions:

Mission Boulevard and Hampton Road – LOS F during the AM peak hour

Also shown in Table 6 is that average delay at the intersection of Mission Boulevard and Hampton Road does not increase with the project during the AM peak hour, therefore this intersection does not have a significant impact. The level of service calculation sheets are included in Appendix B.



#### Cherryland Community Center TIA





\sub Hexagon

XX(XX) = AM(PM) Peak-Hour Traffic Volumes

#### Figure 8 2035 Cumulative with Project Traffic Volumes



#### Table 6

#### Intersection Levels of Service Under 2035 Cumulative Conditions

				Cu	mulati	ve	n an
		No Pr	oject	_	V	Vith Project	
	Peak	Avg		Avg		Incr. In	Incr. In
Intersection	Hour	Delay	LOS	Delay	LOS	Crit. Delay	Crit. V/C
Meekland Ave & Hampton Rd	AM	8.1	В	8.2	В	0.2	0.006
	PM	10.2	В	10.3	В	0.3	0.008
Misson Blvd & Hampton Rd	AM	132.5	F	132.1	F	-0.6	0.005
	PM	30.6	D	31.2	D	3.3	0.006
Bold indicates a substandard level of se	ervice.						
Bold	indicate	es a signi	ficant pr	oject impa	act.		



# 6. Conclusions

The purpose of the traffic study was to identify any traffic-related impacts that would result from the proposed Cherryland community center. The project is located near the northeast corner of Boston Road and Hampton Road in the community of Cherryland in unincorporated Alameda County. The proposed project involves construction of one new buildings and demolition of one residence. The project would generate a relatively low volume of traffic. The project would add a driveway on Hampton Road.

## **Project Intersection Analysis**

The results show that the two signalized study intersections would operate at acceptable levels of service under near term project conditions.

The results of the cumulative analysis show that the signalized study intersection of Mission Boulevard and Hampton Road would operate at unacceptable levels of service, both with and without the project, in the AM peak hour. Since the average delay at the intersection does not increase with the project compared to without the project, this result does not constitute a significant impact.

#### **On-Site Parking**

The estimated parking supply of 80 spaces falls slightly short of the estimated 86 spaces necessary. Since there is on-street parking outside the two-block perimeter that was included in the supply estimates, the likely outcome is that some visitors of the community center may need to park 2 blocks away or more. Although there is no empirical research on the sharing of parking opportunities for the two uses (Meek Park and the proposed community center), it is possible that some users of the community center will overlap with those visiting the park. This aspect of shared parking was not assumed in the estimates, so the 86 parking spaces for the community center are potentially a conservative estimate. Also the Hayward Area Recreation District, which will coordinate activities at the proposed community center, anticipates coordinating activities between the park uses and the community center such that major activities do not overlap. This aspect will significantly improve the chances of providing sufficient available parking for the community center.

#### **Other Transportation Issues**

The proposed community center project would not have a significant adverse effect on existing transit, pedestrian, or bicycle facilities in the study area.



Cherryland Community Center Technical Appendices

## Appendix A Traffic Counts

ype of peak											Me	thod fo	or dete	rmining			otal Enter	-
LOCATION CITY/STAT					on Ro	1											<b>#:</b> 11350 nu, Oct 2	
	ر [ و ₇	646 9 ↓ ↓ 0.93 1 262 2	282 205 591	<ul> <li>◆1078</li> <li>◆ 427</li> </ul>			Peak-Ho eak 15-	Min:	T:45	AM 3		M ts			↓ 0.0 ↓ 0.0 ↓ 0.0 ↓	4.2 4 • • • • • • 5.3 3	2.5 1.0 1.2	1.5 2.6
4		2	11	_		_	18	. ↓ (,	•		₩ 	_		 ( 		* 1 5700		
•	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	NA NA NA	♦ NA	* *			*		٩		<b>*</b>	_				NA + 4 NA	€ NA	
5-Min Count Period			on Biva bound)				on Blvd nbound)				ton Rd bound)				ton Rd bound)		Total	Hourly Totals
Beginning At		Thru	Right	U	Left	Thru		U	Left	Thru	Right	U	Left	Thru	Right	U		
7:00 AM 7:05 AM	0	8 15	9 14	1	2	67 53	2 0	0 1	0	8 6	1 0	0 0	31 37	6 8	14 15	0 0	149 156	
7:05 AM 7:10 AM	0	15	14 6	0 0	5 6	53 54	0 1	0	0	6 3	0 5	0	42	8 11	15	0	156	
7:15 AM	0	18	16	0	3	40	0	0	7	6	1	0	36	9	21	0	157	
7:20 AM	1	21	22	0	5	57	4	0	5	4	2	0	43	17	25	0	206	
7:25 AM 7:30 AM	1   1	18 10	14 17	0 0	10 5	56 63	2 1	1 0	23	4 5	0 1	0 0	39 54	20 18	25 23	0 0	192 201	
7:35 AM	0	24	15	0	8	45	2	0	3	5	1	0	52	27	23	0	201	
7:40 AM	1	24	25	0	8	62	4	0	7	7	2	0	36	19	29	0	224	
7:45 AM 7:50 AM	0	34 21	23 23	0 0	6 9	62 54	9 10	0 0	26	14 20	1 0	0 0	41 50	11 16	25 23	0 0	228 232	
7:55 AM	1	17	23	1	9 6	- 34 45	10	0	7	20 17	1	0	69	15	23 19	0	232	2338
8:00 AM	0	24	18	0	3	58	9	0	5	13	1	0	48	16	24	0	219	2408
8:05 AM	0	22	18	0	13	60 24	8	0	5	4	1	0 0	44	12	23	0	210	2462
8:10 AM 8:15 AM	0	18 32	14 14	0 0	4 12	34 68	3 4	0 1	8	15 13	3 1	0	56 36	19 13	18 25	0 0	192 222	2498 2563
8:20 AM	1	18	12	Ő	4	39	8	0	6	9	5	0	66	19	26	0	213	2570
8:25 AM	1	28	14	1	7	38	3	0	6	8	3	0	43	11	16	0	179	2557
8:30 AM 8:35 AM	0	12 31	14 16	1 0	11 9	50 34	1 3	0 0	4 5	5 8	1 0	0 0	42 48	10 11	24 30	0 0	175 196	2531 2523
8:40 AM	1	20	15	0	6	55	3	0	1	3	1	0	40	13	18	0	190	2525
8:45 AM	1	20	16	0	4	31	1	0	7	5	3	0	63	16	25	0	192	2440
8:50 AM	0	32	14	0	10	58	3	0	0	7	0	0	52	9	18	0	203	2411
8:55 AM Peak 15-Min	1	19 N	18 orthbou	0 nd	4	37	6 outhboun	0 d	5	14 F	1 astboun	0	35	3	35 /estbour	0 nd	178	2356
Flowrates	Left	Thru	Right	U	Left	 Thru	Right	<u>u</u>	Left	 Thru	Right	U	Left	Thru	Right	U	Тс	otal
All Vehicles	4	288	264	4	84	644	136	0	60	204	8	0	640	168	268	0	27	72
Heavy Trucks	0	8	4		0	24	8		0	0	0		0	0	12			6
		4				0				0				4				3
Pedestrians Bicycles	0		0		0	0	0		0	0	0		0	2	0			2
Pedestrians Bicycles Railroad	0	0	0		0	0	0		0	0	0		0	2	0		:	2
Bicycles	0		0		0	0	0		0	0	0		0	2	0		2	2

Report generated on 10/30/2013 3:41 PM

Comments:

ype of peak h											Me	ethod fo	or dete	rmining			otal Enter	-
LOCATION					ton Ro	1											#: 11350	
CITY/STAT	E: Ch	nerryla	nd, CA	1											DAT	FE: Tr	nu, Oct 2	4 2013
$227 \stackrel{\clubsuit}{\bullet} 4$ 1 209 $\stackrel{\clubsuit}{\bullet} 2$	7 <b>9</b> 37 <b>•</b>	0.95 539 3	259 163 306	<ul> <li>◆ 728</li> <li>◆ 652</li> </ul>			Peak-Ho eak 15-	Min:		РМ 4	5:20 P	Μ			• • • • • • • • • • • • • • • • • • •		3.1 3.1 1.8 1.0 .9	1.9 1.1
	106	51 95	38				~	•	TRANS	PORTAT	N SERVI	ATA			<b>↓</b> 2.0		▲ I .7	
5		1	15	_		_	₽_↓	. ↓ 4				_				2		
← × 5-Min Count	+ + + + + + + +		NA	* *		Missie	→		•)	t ↑ ↑	<b>*</b> ton Rd	_			VA +	NA + 4 NA	€ ♦ NA €	Houri
Period			bound)				bound)				bound)				bound)		lotai	Total
Beginning At		Thru	Right	U	Left	Thru	Right	U	Left	Thru		U	Left	Thru	Right	U		
4:00 PM	3	49	26	1	8	61	3	1	7	14	2	0	21	17	23	0	236	
4:05 PM 4:10 PM	1 0	50 50	36 26	0 0	13 13	51 58	3 2	1 0	4	14 10	1 0	0 0	20 26	13 10	23 16	0 0	230 218	
4:15 PM	2	40	23	0	8	42	13	0	4	10	2	0	29	14	25	0	210	
4:20 PM	ō	51	25	1	9	60	5	Õ	6	11	1	Õ	23	13	23	Õ	228	
4:25 PM	4	35	29	0	14	65	8	0	3	12	4	0	34	14	34	0	256	
4:30 PM	4	45	21	0	6	52	7	0	6	11	2	0	19	13	29	0	215	
4:35 PM	1	62	27	0	13	45	2	0	1	11	2	0	21	9	22	0	216	
4:40 PM 4:45 PM	1 0	44 47	29 26	1 0	9 9	57 64	2 2	0 0	3 5	14 11	2 3	0 0	24 28	21 17	23 16	0 0	230 228	
4:50 PM	1	35	25	1	12	56	6	õ	4	13	4	0	27	10	17	0	211	
4:55 PM	3	36	20	1	17	62	3	0	6	9	1	0	22	13	15	0	208	2688
5:00 PM	2	51	27	0	17	60	2	0	2	10	2	0	33	9	28	0	243	2695
5:05 PM 5:10 PM	3 2	58 42	35 33	0 1	14 7	59 63	6 7	0 0	3	10 8	4 4	0 0	18 25	18 14	20 23	0 0	248 233	2713
5:10 PM 5:15 PM	2	42 48	33 38	0	13	63 64	0	0	6	0 17	4	0	25	14	23 25	0	233	2726
5:20 PM	0	37	30	0	11	48	2	0	3	16	1	0	20	18	24	0	210	2748
5:25 PM	2	41	45	0	10	56	4	1	6	10	1	0	29	15	23	0	243	2735
5:30 PM	1	45	26	1	9	74	5	0	3	11	2	0	27	10	24	0	238	2758
5:35 PM	2	55	41	0	12	62	6	0	2	8	1	0	27	7	21	0	244	2786
5:40 PM 5:45 PM	2 1	52 46	34 18	0 0	14 18	57 48	4 7	0 0	5 2	2 15	0 1	0 0	23 33	8 19	17 20	0 0	218 228	2774 2774
5:45 PM 5:50 PM	4	46 33	30	0	18	48 57	7 5	0	5	15	3	0	33 19	19	20 18	0	228	2774
5:55 PM	1	35	27	0	21	44	6	1	4	9	1	0	30	13	15	0	207	2769
eak 15-Min			orthbou				outhboun				astbour				Vestboui			
Flowrates	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		otal
All Vehicles	28	592	424	4	136	744	52	0	52	140	32	0	276	172	272	0		24
eavy Trucks	0	8	20		0	28	0		0	0	0		4	4	12			6
Pedestrians Bicycles	0	4	0		0	0 0	0		0	4	0		0	16 0	0			4 2
Railroad	0		0		0	U	0		0		0		0	U	U		-	
Nalijuau																		
opped Buses																		

Report generated on 10/30/2013 3:41 PM

Comments:

Type of peak	hour be	eing rep	orted: I	nterse	ction P	'eak					Me	thod fo	or deter	mining	peak h	our: To	otal Enteri	ng Volun
LOCATION	: Me	ekland	Ave	Ham	pton F	۲d											<b>#:</b> 11350	
CITY/STAT	re: CI	nerryla	ind, CA		-										DAT	re: Th	u, Oct 2	4 2013
	46		25			F	Peak-H	lour:	7:30 A	M 8	:30 AN	1						
	•		► 22				eak 15								4.5   ♥	1	F	
		• <b>↓</b> •	<u> </u>												0.0	5.3 2	.5	
0 + 0	• ر		<b>L</b> 281	<b>4</b> 367										0.0 + 0	ر ل و _{0.}	<u></u>	• L • / •	1.9
(	) 🔸	0.89	<b>←</b> 0												· _ /		1.4	1.9
0 🗕	· ·		<b>6</b> 86	▲ 160											.0 <b>-</b>	$\checkmark$	• 0.0	1.9
	0	344 3	8					•						0.0 0.0	<u>, , , , , , , , , , , , , , , , , , , </u>	+ r	3.5	1.9
	+	· •	•					Q	uati	ty C	oun	ts			0.0	3.2 0	.0	
	42	8 3	82				~		COL	LECTIO	SERVI	CES			4.9		.9	
	Т		I.												I		I I	
		0													0	0 0	D	
	•	$\rightarrow$		—												+ '	•	
		5	1											0	2	AD	• 0	
ę	97	$\checkmark$	15				₩.	.			*			0	2	$\checkmark$	¢ ¢	
	-	$\longleftrightarrow$		_			44.5	* *		l	<u> </u>	_		0	<b>ر ب</b>	+ r		
		221									<i>(</i>				0	3 (	D	
	I		I												I		I	
	+	NA 1	•													NA		
			• L	_						<b>*</b> * *		_			ډ 💷	+ 4	· L	
+	و	$\bigtriangleup$	t	+			1			ſ	1				<u>ا</u> د		£	
1	NA 🍝 🔇		🔶 NA											Ν	ia 🏓 🚦		+ NA	
+	<u> </u>	$\mathbf{Y}$	<u></u>	<b>→</b>			I			I						+ (	ļ <u>ſ</u>	
		NA														NA		
	+	1	<b>€</b> I												I		I	
5-Min Count Period			and Ave bound)				and Ave				ton Rd bound)				ton Rd bound)		Total	Hourly Totals
Beginning At	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U	Left	Thru	Right	U		Totals
7:00 AM 7:05 AM	0	17 15	2	0 0	0 5	13 23	0	0 0	0 0	0 0	0	0 0	1 2	0 0	9 12	0 0	42 58	
7:10 AM	0	23	0	0	4	16	0	0	0	0	0	0	5	0	8	0	56	
7:15 AM 7:20 AM	0	33 10	5 1	0 0	5 2	15 19	0 0	0 0	0	0 0	0 0	0 0	1	0 0	20 15	0 0	79 48	
7:25 AM	0	23	0	0	6	18	0	0	0	0	0	0	2	0	17	0	66	
7:30 AM 7:35 AM	0	22 35	4 1	0 0	3 4	34 19	0 0	0 0	0	0 0	0 0	0 0	2 3	0 0	25 31	0 0	90 93	
7:40 AM	0	36	0	0	11	18	0	0	0	0	0	0 0	6 9	0	35	0	106	
7:45 AM 7:50 AM	0	34 32	0	0	10 11	22 27	0	0	0	0	0	0	9	0	33 19	0	108 101	
7:55 AM 8:00 AM	0	36 35	3 5	0 0	11 9	38 34	0 0	0 0	0	0 0	0 0	0 0	5 16	0 0	29 18	0 0	122 117	969 1044
8:05 AM	0	18	4	0	9	40	0	0	0	0	0	0	9	0	17	0	97	1083
8:10 AM 8:15 AM	0	26 21	9 6	0 0	12 18	36 39	0 0	0 0	0	0 0	0 0	0 0	7 5	0 0	20 22	0 0	110 111	1137 1169
8:20 AM	0	22	2	0	15	17	0	0	0	0	0	0	10	0	13	0	79	1200
8:25 AM 8:30 AM	0	<u>27</u> 22	<u>1</u> 2	<u>0</u> 0	<u>9</u> 4	<u>18</u> 15	<u>    0</u> 0	<u>0</u> 0	0	0	0	<u>0</u> 0	5 0	0	<u>19</u> 16	<u>0</u> 0	<u>79</u> 59	<u>1213</u> 1182
8:35 AM	0	24	1	0	5	15	0	0	0	0	0	0	1	0	8	0	54	1143
8:40 AM 8:45 AM	0	14 12	0 1	0 0	8 2	10 15	0 0	0 0	0 0	0 0	0 0	0 0	4	0 0	7 13	0 0	43 46	1080 1018
8:45 AM 8:50 AM	0	12	4	0	10	15	0	0	0	0	0	0	3	0	16	0	46 64	981
	0			•						•	•	-						501
8:55 AM Peak 15-Min	0	18	1 orthbour	0	9	14	0 Duthbou	0	0	0	0 astboun	0	3	0	7 estbour	0	52	911

Flowrates All Vehicles Heavy Trucks 
 Thru

 396

 40

 0
 Thru 412 12 Right 44 0 Thru 0 0 Thru 0 0 Right Total 1360 52 Left Left Right **U** Right Left **U** 0 Left 0 0 0 0 124 0 0 120 264 0 0 0 0 0 0 Pedestrians 272 88 36 396 Bicycles Railroad 0 0 0 0 0 0 0 0 0 0 0 0 0 Stopped Buse Comments:

Report generated on 10/30/2013 3:41 PM



4:40 PM	0	33	2	0	15	31	0	0	0	0	0	0	2	0	16	0	99	
4:45 PM	0	32	12	0	6	29	0	0	0	0	0	0	3	0	10	0	92	
4:50 PM	0	37	4	0	13	35	0	0	0	0	0	0	0	0	12	0	101	
4:55 PM	0	40	2	0	13	25	0	0	0	0	0	0	2	0	10	0	92	1080
5:00 PM	0	29	4	0	13	26	0	0	0	0	0	0	5	0	11	0	88	1087
5:05 PM	0	51	4	0	14	17	0	0	0	0	0	0	4	0	15	0	105	1115
5:10 PM	0	36	8	0	13	36	0	0	0	0	0	0	2	0	15	0	110	1149
5:15 PM	0	30	3	0	4	32	0	0	0	0	0	0	8	0	14	0	91	1158
5:20 PM	0	32	2	0	13	32	0	0	0	0	0	0	4	0	16	0	99	1162
5:25 PM	0	32	6	0	16	21	0	0	0	0	0	0	2	0	17	0	94	1161
5:30 PM	0	36	9	0	9	24	0	0	0	0	0	0	7	0	20	0	105	1170
5:35 PM	0	45	1	0	7	24	0	0	0	0	0	0	5	0	12	0	94	1170
5:40 PM	0	41	2	0	8	29	0	0	0	0	0	0	4	0	12	0	96	1167
											~	•	5	0	45	~		4404
5:45 PM	0	39	5	0	15	30	0	0	0	0	0	0	5	0	15	0	109	1184
5:45 PM 5:50 PM	0	39 53	5 4	0 0	15 12	30 45	0	0	0	0	0	0	5	0	15	0	109 129	1184
			5 4 2		-		0 0 0		-		0 0 0			Ŭ				-
5:50 PM 5:55 PM Peak 15-Min	0	53 34 N	4 2 orthbour	0	12 10	45 35 <b>S</b> o	0 0 0 outhbour	0	0	0 0 E	0 0 astboun	0	5	0 0 0	10 16 /estboun	0	129	1212
5:50 PM 5:55 PM Peak 15-Min Flowrates	0	53 34	4 2	0	12	45 35	0 0 0 outhbour Right	0	0	0	0 0	0	5	0 0	10 16	0	129 99 Te	1212 1219
5:50 PM 5:55 PM Peak 15-Min Flowrates All Vehicles	0	53 34 N	4 2 orthbour	0 0 nd	12 10	45 35 <b>S</b> o		0 0 nd	0	0 0 E	0 0 astboun	0 0 d	5	0 0 0	10 16 /estboun	0 0 d	129 99 Te	1212 1219
5:50 PM 5:55 PM Peak 15-Min Flowrates	0 0 Left	53 34 No Thru 504 16	4 2 orthbour Right	0 0 nd U	12 10 Left	45 35 So Thru	Right	0 0 nd U	0 0 Left	0 0 E Thru 0 0	0 0 astboun Right	0 0 d U	5 2 Left	0 0 W Thru	10 16 /estboun Right	0 0 d U	129 99 To 13	1212 1219 otal
5:50 PM 5:55 PM Peak 15-Min Flowrates All Vehicles	0 0 <u>Left</u> 0	53 34 No Thru 504	4 2 orthbour <u>Right</u> 44	0 0 nd U	12 10 Left 148 0	45 35 So Thru 440	Right 0	0 0 nd U	0 0 Left 0	0 0 E Thru 0	0 0 astboun Right 0	0 0 d U	5 2 Left 48	0 0 W Thru 0	10 16 /estboun Right 164	0 0 d U	129 99 To 13	1212 1219 otal
5:50 PM 5:55 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles	0 0 <u>Left</u> 0	53 34 No Thru 504 16	4 2 orthbour <u>Right</u> 44	0 0 nd U	12 10 Left 148	45 35 So Thru 440 4	Right 0	0 0 nd U	0 0 Left 0	0 0 E Thru 0 0	0 0 astboun Right 0	0 0 d U	5 2 Left 48	0 0 W Thru 0 0	10 16 /estboun Right 164	0 0 d U	129 99 To 13 2 6	1212 1219 otal
5:50 PM 5:55 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles Railroad	0 0 Left 0 0	53 34 No Thru 504 16	4 2 orthbour <u>Right</u> 44 0	0 0 nd U	12 10 Left 148 0	45 35 <b>So</b> Thru 440 4 0	Right 0 0	0 0 nd U	0 0 Left 0 0	0 0 <b>E</b> Thru 0 0 36	0 0 astboun <u>Right</u> 0 0	0 0 d U	5 2 Left 48 0	0 0 <b>W</b> Thru 0 0 4	10 <u>16</u> /estboun Right 164 0	0 0 d U	129 99 To 13 2 6	1212 1219 048 20 04
5:50 PM 5:55 PM Peak 15-Min Flowrates All Vehicles Heavy Trucks Pedestrians Bicycles	0 0 Left 0 0	53 34 No Thru 504 16	4 2 orthbour <u>Right</u> 44 0	0 0 nd U	12 10 Left 148 0	45 35 <b>So</b> Thru 440 4 0	Right 0 0	0 0 nd U	0 0 Left 0 0	0 0 <b>E</b> Thru 0 0 36	0 0 astboun <u>Right</u> 0 0	0 0 d U	5 2 Left 48 0	0 0 <b>W</b> Thru 0 0 4	10 <u>16</u> /estboun Right 164 0	0 0 d U	129 99 To 13 2 6	1212 1219 048 20 04

Report generated on 10/30/2013 3:41 PM

# Appendix B Level of Service Calculations

#### Level Of Service Computation Report 1994 HCM Operations (Future Volume Alternative) Existing AM Intersection #1: Meekland Ave & Hampton Rd Signal=Protect/Rights=Include Final Vol: 128*** 0 360 Lanes 0 0 1 1 Signal=Protect Signal=Protect Final Vol: Lanes: Vol Cnt Date: Rights=Include n/a Rights=Overlap Lanes: Final Vol: Cycle Time (sec): 66 0 0 1 296 Loss Time (sec): 9 0 0 0 0 0 Critical V/C: 0.354 0 0 Avg Crit Del (sec/veh): 9.6 0 0 Avg Delay (sec/veh): 7.8 91*** LOS: В 1 Lanes: 0 0 0 362*** Final Vol: 0 40 Signal=Protect/Rights=Overlap Street Name: Meekland Ave Hampton Rd North Bound South Bound L - T - R L - T - R Approach: East Bound West Bound L – T – R Movement: L - T - R L - T - R ----| 7 10 10 7 10 10 0 0 0 7 10 10 Min. Green: 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Y+R: 4.0 ---!------!!------!! Volume Module: 0 344 38 122 342 0 0 0 Base Vol: 0 86 0 281 1.00 Initial Bse: 0 344 38 122 342 0 0 281 0 0 86 0 0 0 0 0 0 0 0 0 0 Added Vol: 0 0 Ο 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 38 0 344 122 342 0 0 0 0 86 0 Initial Fut: 281 1.00 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 PHF Adj: 0.95 0 362 PHF Volume: 40 128 360 0 0 0 0 91 0 296 0 0 0 362 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Ō 0 0 0 40 91 128 360 Reduced Vol: 0 296 1.00 MLF Adj: 0 FinalVolume: 0 362 40 128 360 0 0 0 91 0 296 -----||-----||------||------|| Saturation Flow Module: 0 -----||-----||------||-------|| Capacity Analysis Module: Vol/Sat: 0.00 0.19 0.02 0.07 0.19 0.00 0.00 0.00 0.00 0.05 0.00 0.16 * * * * Crit Moves: * * * * * * * * 0.0 35.5 44.4 12.6 48.1 0.0 0.0 0.0 0.0 8.9 0.0 21.5 Green Time: Volume/Cap: 0.00 0.35 0.03 0.35 0.26 0.00 0.00 0.00 0.00 0.35 0.00 0.48 2.3 15.2 2.0 0.0 5.7 0.0 0.0 0.0 17.1 0.0 12.0 Delay/Veh: 0.0 1.00 1.00 1.00 1.00 AdjDel/Veh: 0.0 5.7 2.3 15.2 2.0 0.0 0.0 0.0 0.0 17.1 0.0 12.0 DesignQueue: 0 6 0 4 4 0 0 0 0 3 0 8 Note: Queue reported is the number of cars per lane.

#### Level Of Service Computation Report 1994 HCM Operations (Future Volume Alternative) Background AM Intersection #1: Meekland Ave & Hampton Rd Signal=Protect/Rights=Include 131*** Final Vol: 0 367 Lanes: 0 1 Signal=Protect Final Vol: Lanes: Rights=Include Signal=Protect Lanes: Final Vol: Vol Cnt Date: n/a Rights=Overlap Cycle Time (sec): 66 ٥ ٥ 1 302 Loss Time (sec): 9 0 0 0 0 Critical V/C: 0.361 0 0 0 Avg Crit Del (sec/veh): 9.6 0 93*** 0 Avg Delay (sec/veh): 78 LOS: в 1 Lanes: Ω 0 369*** Final Vol: 0 41 Signal=Protect/Rights=Overlap Street Name: Meekland Ave Hampton Rd East Bound West Bound Approach: North Bound South Bound Movement: L – T – R L – T – R L – T – R L – T – R -----||-----||------|| 7 10 10 7 10 10 0 0 0 7 10 10 Min. Green: 4.0 4.0 4.0 4.0 4.0 4.0 Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 ----||-----| _____ Volume Module: 0 351 Base Vol: 39 124 349 0 0 0 0 88 0 287 Initial Bse: 0 351 0 0 0 39 124 349 0 88 0 287 0 0 0 0 0 0 0 0 0 0 0 0 Added Vol: 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 Initial Fut: 0 351 39 124 349 0 88 0 287 0.95 0.95 0.95 0 0 PHF Volume: 0 369 41 131 367 0 0 302 93 0 0 0 0 0 369 0 0 0 41 131 367 Reduct Vol: 0 0 0 0 0 0 41 0 Reduced Vol: 0 0 0 93 0 302 Reduced Vol: 0 369 41 131 367 0 0 1.00 1.00 1.00 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <t 1.00 1.00 1.00 1.00 302 Saturation Flow Module: Lanes: Final Sat.: 0 1900 1900 1900 1900 0 0 0 0 1900 0 1900 Capacity Analysis Module: Vol/Sat: 0.00 0.19 0.02 0.07 0.19 0.00 0.00 0.00 0.00 0.05 0.00 0.16 Crit Moves: **** * * * * * * * * 0.0 35.5 44.4 12.6 48.1 0.0 0.0 0.0 0.0 8.9 0.0 21.5 Green Time: Volume/Cap: 0.00 0.36 0.03 0.36 0.27 0.00 0.00 0.00 0.00 0.36 0.00 0.49 Delay/Veh: 0.0 5.7 2.3 15.3 2.0 0.0 0.0 0.0 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0 17.2 0.0 12.0 1.00 1.00 1.00 1.00 0.0 17.2 0.0 12.0 AdjDel/Veh: 0.0 5.7 2.3 15.3 2.0 0.0 0.0 0.0 7 0 0 DesignQueue: 0 4 4 0 0 0 3 0 8

Level Of Service Computation Report

#### 1994 HCM Operations (Future Volume Alternative) Bkgrd + Project AM Intersection #1: Meekland Ave & Hampton Rd Signal=Protect/Rights=Include 137*** Final Vol: 0 367 Lanes: 0 1 Signal=Protect Final Vol: Lanes: Rights=Include Signal=Protect Lanes: Final Vol: Vol Cnt Date: n/a Rights=Overlap Cycle Time (sec): 66 ٥ ٥ 1 305 Loss Time (sec): 9 0 0 0 0 Critical V/C: 0.367 0 0 0 Avg Crit Del (sec/veh): 9.8 0 96*** 0 Avg Delay (sec/veh): 78 LOS: в 1 Lanes: Ω 0 369*** Final Vol: 0 47 Signal=Protect/Rights=Overlap Street Name: Meekland Ave Hampton Rd East Bound West Bound Approach: North Bound South Bound Movement: L – T – R L – T – R L – T – R L – T – R -----||-----||------|| 7 10 10 7 10 10 0 0 0 7 10 10 Min. Green: 4.0 4.0 4.0 4.0 4.0 4.0 Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 ----||-----| ____ Volume Module: 0 351 Base Vol: 45 130 349 0 0 0 0 91 0 290 Initial Bse: 0 351 0 0 0 45 130 349 0 91 0 290 0 0 0 0 0 0 0 0 0 0 0 0 Added Vol: 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 Initial Fut: 0 351 0 0 45 130 349 0 91 0 290 0.95 0.95 0.95 0 0 PHF Volume: 0 369 47 137 367 0 0 305 96 0 0 0 0 369 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 47 0 Reduced Vol: 137 367 0 0 0 96 0 305 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 FinalVolume: 0 369 47 137 367 0 0 0 0 96 0 305 Saturation Flow Module: Lanes: Final Sat.: 0 1900 1900 1900 1900 0 0 0 0 1900 0 1900 Capacity Analysis Module: Vol/Sat: 0.00 0.19 0.02 0.07 0.19 0.00 0.00 0.00 0.00 0.05 0.00 0.16 Crit Moves: **** * * * * * * * * 0.0 35.0 44.0 13.0 47.9 0.0 0.0 0.0 0.0 9.1 0.0 22.0 Green Time: Volume/Cap: 0.00 0.37 0.04 0.37 0.27 0.00 0.00 0.00 0.00 0.37 0.00 0.48 2.4 15.1 2.0 1.00 1.00 1.00 0.0 0.0 0.0 Delay/Veh: 0.0 6.0 0.0 17.1 0.0 11.7 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.0 17.1 0.0 11.7 AdjDel/Veh: 0.0 6.0 2.4 15.1 2.0 0.0 0.0 0.0 1 4 4 0 DesignQueue: 0 7 0 0 0 3 0 8

							utation Repo Volume Alto M					
ntersection #2: N	lisson Blvo	d & Har	mpton Rd									
s	Final Lai Signal=Split	Vol: nes:	Signal=P 79 1 0	714*** 2	o o	95 1	signal=Split					
Final Vol: Lanes: F			Cy	Vol Cnt cle Time (			Rights=Overla	<b>k</b>	nes: Final			
63 0 _	•		L	oss Time (	sec):	12		▲ <u>`</u>	1 29	7		
1 _ 139*** 0 _	<b>→</b>			Critical	V/C:	0.677		<u> </u>	0 1 21	6		
1 -	7		Avg Cri	t Del (sec/	veh):	20.6		2	0			
19 0 -	¥ –		Avg D	Delay (sec/	veh):	16.6		<b>-</b>	1 622'	***		
	•				LOS:	С		•				
			५ ◀¶	Ē		(						
	Laı Final	nes: Vol:	1 0 6*** Signal=P	2 290 rotect/Rigl	0 nts=Overla	1 224 p						
Street Name Approach: Movement:	Nor L -	Т	Misson bund - R	Sou L ·	- Т	– R	L -	- Т	ound - R	L -		- R
Lin. Green: T+R:	7 4.0	10 4.0	10 4.0	7 4.0	10 4.0	10 4.0	10 4.0	10 4.0	10 4.0	10 4.0	10 4.0	10 4.0
Volume Modu Base Vol: Growth Adj: Initial Bse Added Vol: PasserByVol Initial Fut Jser Adj: PHF Adj: PHF Volume: Reduct Vol: Reduced Vol PCE Adj: MLF Adj: FinalVolume Saturation Sat/Lane: Adjustment:	le: 6 1.00 6 0 1.00 0.95 6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	262 1.00 262 0 262 1.00 0.95 276 0 276 1.00 1.05 290  dule: 1900 1.00 2.00 3800	213 1.00 213 0 0 213 1.00 0.95 224 0 224 1.00 1.00 224   1900 1.00 1.00 1.00 1.00	90 1.00 90 0 90 1.00 0.95 95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	646 1.00 646 1.00 0.95 680 0 680 1.00 1.05 714 1900 1.00 2.00 3800	75 1.00 75 1.00 0.95 79 0 79 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	57 1.00 57 0 0.95 60 0 0.95 60 1.00 1.00 1.05 63 1.00 1.00 0.57 1900 1.00 0.57 1083	126 1.00 126 1.00 0.95 133 0 133 1.00 1.05 139  1900 1.26 2394	17 1.00 17 0 0.95 18 0 18 1.00 1.05 19 	591 1.00 591 0 0 591 1.00 622 0 622 1.00 622 1.00 622 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	205 1.00 205 1.00 0.95 216 0 216 1.00 216 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	282 1.00 282 1.00 0.95 297 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Capacity An Vol/Sat: Crit Moves: Green Time: Volume/Cap: Delay/Veh: User DelAdj AdjDel/Veh: DesignQueue Note: Queue	alysis 0.00 **** 7.0 0.04 21.9 : 1.00 21.9 : 0	Modul 0.08 15.3 0.40 18.9 1.00 18.9 5	.e: 0.12 48.3 0.20 4.8 1.00 4.8 4.8	0.05 10.7 0.38 21.2 1.00 21.2 4	0.19 **** 19.0 0.80 22.7 1.00 22.7 13	0.04 29.0 0.12 11.3 1.00 11.3 2	0.06 10.0 0.47 21.9 1.00 21.9 4	0.06 **** 10.0 0.47 21.9 1.00 21.9 4	0.06 10.0 0.47 21.9	0.33 ( **** 33.0 3 0.80 ( 17.9 2 1.00 2	0.11 33.0 0.28 10.4 1.00	0.16 43.7 0.29 6.6 1.00 6.6

Level Of Service Computation Report

#### 1994 HCM Operations (Future Volume Alternative) Background AM Intersection #2: Misson Blvd & Hampton Rd Signal=Protect/Rights=Overlap Final Vol: 81 728*** 97 Lanes: 2 Λ Signal=Split Rights=Include Signal=Split Lanes: Final Vol: Final Vol: Lanes: Vol Cnt Date: n/a Rights=Overlap Cycle Time (sec): 81 64*** ٥ 1 303 Loss Time (sec): 12 0 143 Critical V/C: 0.691 220 1 Avg Crit Del (sec/veh): 21.2 0 635*** 19 Avg Delay (sec/veh): 17 0 1 С LOS: 2 Lanes: 0 Final Vol: 295 228 Signal=Protect/Rights=Overlap Street Name: Misson Blvd Hampton Rd Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L – T – R L – T – R L - T - R -----||-----||------|| 7 10 10 7 10 10 10 10 10 10 10 10 Min. Green: 4.0 4.0 4.0 4.0 4.0 4.0 Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 ----||-----| ____ Volume Module: Base Vol: 6 267 217 92 659 77 58 129 17 603 209 288 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 77 Initial Bse: 6 267 217 92 659 58 129 17 603 209 288 0 0 0 0 0 0 0 0 0 0 0 0 Added Vol: PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 6 267 217 92 659 77 58 129 17 603 209 288 PHF Adj: 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 81 61 136 18 PHF Volume: 6 281 228 97 694 635 220 303 0 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: Reduced Vol: 6 281 228 97 694 81 61 136 18 635 220 303 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.05 1.00 1.05 1.05 MLF Adj: 1.05 1.00 1.00 1.00 6 295 228 97 728 81 64 143 19 635 220 303 FinalVolume: Saturation Flow Module: 1.00 2.00 1.00 1.00 2.00 1.00 0.57 1.26 0.17 1.00 1.00 1.00 Lanes: Final Sat.: 1900 3800 1900 1900 3800 1900 1080 2403 317 1900 1900 1900 Capacity Analysis Module: Vol/Sat: 0.00 0.08 0.12 0.05 0.19 0.04 0.06 0.06 0.06 0.33 0.12 0.16 Crit Moves: **** * * * * **** * * * * 7.0 15.3 48.3 10.7 19.0 29.0 10.0 10.0 10.0 33.0 33.0 43.7 Green Time: Volume/Cap: 0.04 0.41 0.20 0.39 0.82 0.12 0.48 0.48 0.48 0.82 0.28 0.30 21.3 23.3 Delay/Veh: 21.9 18.9 4.9 11.3 22.0 22.0 22.0 18.6 10.4 6.6 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh: 21.9 18.9 4.9 21.3 23.3 11.3 22.0 22.0 22.0 18.6 10.4 6.6 DesignQueue: 0 6 4 4 13 2 5 5 5 19 6 7

Level Of Service Computation Report

#### 1994 HCM Operations (Future Volume Alternative) Bkgrd + Project AM Intersection #2: Misson Blvd & Hampton Rd Signal=Protect/Rights=Overlap Final Vol: 85 728*** 97 Lanes: 2 Λ Signal=Split Rights=Include Signal=Split Lanes: Final Vol: Final Vol: Lanes: Vol Cnt Date: n/a Rights=Overlap Cycle Time (sec): 81 65 ٥ 1 303 Loss Time (sec): 12 0 141*** Critical V/C: 0.694 224 1 Avg Crit Del (sec/veh): 21.2 0 635*** 21 Avg Delay (sec/veh): 17 0 1 С LOS: 2 Lanes: 0 Final Vol: 11 295 228 Signal=Protect/Rights=Overlap Street Name: Misson Blvd Hampton Rd Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L – T – R L - T - R -----||-----||------|| 7 10 10 7 10 10 10 10 10 10 10 10 Min. Green: 4.0 4.0 4.0 4.0 4.0 4.0 Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 ----||-----| ____ Volume Module: Base Vol: 10 267 217 92 659 81 59 128 19 603 213 288 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Initial Bse: 10 267 217 92 659 81 59 128 19 603 213 288 0 0 0 0 0 0 0 0 0 0 0 0 Added Vol: PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 Initial Fut: 10 267 217 92 659 81 59 128 19 603 213 288 User Adj: 1.00 1.00 1.00 PHF Adj: 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 62 135 PHF Volume: 11 281 85 228 97 694 20 635 224 303 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 11 281 228 97 694 85 62 135 20 635 224 303 1.00 1.00 1.00 1.00 1.00 1.00 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.00 1.05 1.00 1.05 1.05 MLF Adj: 1.05 1.00 1.00 1.00 FinalVolume: 11 295 228 97 728 85 65 141 21 635 224 303 Saturation Flow Module: 1.00 2.00 1.00 1.00 2.00 1.00 0.57 1.25 0.18 1.00 1.00 1.00 Lanes: Final Sat.: 1900 3800 1900 1900 3800 1900 1088 2361 350 1900 1900 1900 Capacity Analysis Module: Vol/Sat: 0.01 0.08 0.12 0.05 0.19 0.04 0.06 0.06 0.06 0.33 0.12 0.16 Crit Moves: **** * * * * * * * * * * * * 7.0 15.3 48.3 10.7 19.0 29.0 10.0 10.0 10.0 33.0 33.0 43.7 Green Time: Volume/Cap: 0.06 0.41 0.20 0.39 0.82 0.13 0.49 0.49 0.49 0.82 0.29 0.30 21.3 23.3 Delay/Veh: 22.0 18.9 4.9 11.3 22.0 22.0 22.0 18.6 10.5 6.6 1.00 1.00 1.00 User DelAdj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 AdjDel/Veh: 22.0 18.9 4.9 21.3 23.3 11.3 22.0 22.0 22.0 18.6 10.5 6.6 DesignQueue: 0 6 4 4 13 2 5 5 5 19 6 7

Vol:

#### Cherryland Community Center Cherryland, CA Level Of Service Computation Report 1994 HCM Operations (Future Volume Alternative) Existing PM Intersection #1: Meekland Ave & Hampton Rd Final Vol: Lanes: **.**

			<	∢↓	- <b>+</b> -	-↓>>	• •	•		
		Signal=Protect		•	•	•		Signal=Protect		
Final Vol:	Lanes:	Rights=Include			Vol Cnt D		n/a	Rights=Overlap	Lanes:	Final Vol
0	0	▲		Cyc	le Time (s	ec):	75	•	1	182
	0	<b>★</b>		Los	ss Time (s	ec):	9		0	
0	0				Critical	V/C:	0.406	-	0	0
	0			Avg Crit I	Del (sec/v	eh):	9.1	. ★	0	
0	0	-7		Avg De	lay (sec/v	eh):	7.4	2	1	56***
		•			L	OS:	в	•		
			▲	-	Ť	<b></b> ↑	•			
		Lanes: Final Vol:	0 0	0	1 482***	0	1 53			
			Si	gnal=Pro	otect/Right	ts=Overl	ар			

Street Name: Approach: Movement:		rth Bc	Meekla ound - R	South Bound					Hampt und - R			
Min. Green: Y+R:	4.0	10 4.0	10	4.0	4.0	10 4.0	4.0			4.0	10 4.0	10 4.0
Volume Module:												
Base Vol:	0	458	50	134	351	0	0	0	0	53	0	173
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	458	50	134	351	0	0	0	0	53	0	173
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:		458	50	134	351	0	0	0	0	53	0	173
2	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00
2	0.95		0.95		0.95	0.95		0.95	0.95	0.95		0.95
	0	482	53	141	369	0	0	0	0	56	0	182
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		482	53	141	369	0	0	0	0	56	0	182
PCE Adj:		1.00	1.00 1.00		1.00 1.00	1.00		1.00	1.00	1.00		1.00 1.00
MLF Adj: FinalVolume:			1.00 53	141	369	0.11	0.11	0.11	1.00	1.00 56	1.00	182
Fillarvorulle.							-	-	1		0	
Sat/Lane:		1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.00	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00
Final Sat.:			1900		1900	0	0	0	0	1900	0	1900
	1											
Capacity Ana												
Vol/Sat:			0.03		0.19	0.00	0.00	0.00	0.00	0.03 ****	0.00	0.10
Crit Moves:	0 0		F.O. (	****	F 0 0	0 0	0 0	0 0	0 0		0 0	00.4
	0.0		52.6	13.4		0.0	0.0	0.0	0.0	7.0 0.31	0.0	20.4 0.35
Volume/Cap: Delay/Veh:			0.04	0.42	1.4	0.00	0.00	0.00	0.00	20.9	0.00	0.35 14.4
User DelAdj:			1.00		1.00	1.00		1.00	1.00	1.00		14.4
AdjDel/Veh:		5.1	2.2	18.2	1.4	0.0	0.0	0.0	0.0	20.9	0.0	14.4
DesignQueue:			2.2	5	3	0.0	0.0	0.0	0.0	20.5	0.0	 6
Note: Queue :								•	0	2	0	0
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						. 1						

#### Cherryland Community Center Cherryland, CA Level Of Service Computation Report 1994 HCM Operations (Future Volume Alternative) Background AM Intersection #1: Meekland Ave & Hampton Rd



Movement:	No: L	rth Bc - T	und – R				L ·	- Т	und – R	L – T – R		
Min. Green: Y+R:	7 4.0	10 4.0	10 4.0	7 4.0	10 4.0	10 4.0	04.0	0 4.0	0 4.0	7 4.0	10 4.0	10 4.0
Base Vol:	0	351	39	124	349	0	0	0	0	88	0	287
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	0	351	39	124	349	0	0	0	0	88	0	287
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	0	0	0	0	0	0	0	0	0	0	0	0
Initial Fut:	0	351	39	124	349	0	0	0	0	88	0	287
User Adj:			1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Adj:			0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
	0	369	41	131	367	0	0	0	0	93	0	302
Reduct Vol:		0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		369	41	131	367	0	0	0	0	93	0	302
PCE Adj:			1.00		1.00	1.00		1.00	1.00	1.00		1.00
MLF Adj:			1.00		1.00	1.00		1.00	1.00	1.00		1.00
FinalVolume:			41	131		0	0	0	0	. 93	0	302
Saturation F.		1900	1900	1000	1900	1900	1000	1900	1900	1900	1000	1900
Adjustment:			1.00		1.00	1,00		1.00	1.00	1.00		1,00
Lanes:		1.00	1.00		1.00	0.00		0.00	0.00	1.00		1.00
Final Sat.:			1900		1900	0.00	0.00	0.00	0.00	1900	0.00	1900
									-		-	
Capacity Analysis Module:												
Vol/Sat:	0.00	0.19	0.02	0.07	0.19	0.00	0.00	0.00	0.00	0.05	0.00	0.16
Crit Moves:		* * * *		* * * *						* * * *		
Green Time:	0.0	35.5	44.4	12.6	48.1	0.0	0.0	0.0	0.0	8.9	0.0	21.5
Volume/Cap:	0.00	0.36	0.03	0.36	0.27	0.00	0.00	0.00	0.00	0.36	0.00	0.49
Delay/Veh:	0.0	5.7	2.3	15.3	2.0	0.0	0.0	0.0	0.0	17.2	0.0	12.0
User DelAdj:			1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00
5	0.0	5.7	2.3	15.3	2.0	0.0	0.0	0.0	0.0	17.2	0.0	12.0
DesignQueue:		7	0	4	4	0	0	0	0	3	0	8
Note: Queue :	repor	ted is	the n	umber	of ca	irs per	lane	•				

#### Level Of Service Computation Report 1994 HCM Operations (Future Volume Alternative) Background PM Intersection #1: Meekland Ave & Hampton Rd Signal=Protect/Rights=Include Final Vol: 0 144*** 377 Lanes: 0 1 0 1 Signal=Protect Signal=Protect Final Vol: Lanes: Vol Cnt Date: n/a Lanes: Final Vol: Rights=Include Rights=Overlap Cycle Time (sec): 75 0 0 1 185 Loss Time (sec): 9 0 0 0 0 Critical V/C: 0 4 1 4 0 0 0 Avg Crit Del (sec/veh): 9.2 0 0 0 Avg Delay (sec/veh): 74 57*** LOS: В 0 0 1 Lanes: 0 1 492*** Final Vol: 0 54 Signal=Protect/Rights=Overlap Street Name: Meekland Ave Hampton Rd North Bound South Bound East Bound L - T - R L - T - R L - T - R East Bound West Bound Approach: L - T - R Movement: 0 0 0 7 10 10 7 10 10 7 10 10 Min. Green: 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Volume Module: 0 467 51 137 358 0 0 0 0 0 Base Vol: 54 176 Initial Bse: 0 467 51 137 358 0 0 0 0 54 0 176 0 0 0 0 0 0 0 Added Vol: 0 0 0 0 0 0 0 0 0 467 1 00 PasserByVol: 0 0 0 0 0 0 0 0 0 0 51 0 137 358 54 176 Initial Fut: 0 0 PHF Adj: PHF Volume: 0 492 54 144 377 0 0 0 0 57 0 185 Reduct Vol:0000Reduced Vol:049254144377 0 0 0 0 0 0 0 0 0 0 57 0 0 185 PCE Adj:1.001.001.001.001.001.001.001.001.00MLF Adj:1.001.001.001.001.001.001.001.001.00 MLF Adj: FinalVolume: 0 492 54 144 377 0 0 0 0 57 0 185 Saturation Flow Module: Sat/Lane:19001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900190019001900< 0 1900 1900 1900 1900 0 0 0 1900 0 1900 0 Final Sat.: Capacity Analysis Module: Vol/Sat: 0.00 0.26 0.03 0.08 0.20 0.00 0.00 0.00 0.00 0.03 0.00 0.10 Crit Moves: * * * * * * * * * * * * Green Time: 0.0 45.6 52.6 13.4 59.0 0.0 0.0 0.0 0.0 7.0 0.0 20.4 Volume/Cap: 0.00 0.43 0.04 0.43 0.25 0.00 0.00 0.00 0.00 0.32 0.00 0.36 0.0 5.2 2.2 18.2 1.4 0.0 0.0 0.0 0.0 20.9 0.0 14.4 Delay/Veh: AdjDel/Veh: 0.0 5.2 2.2 18.2 1.4 0.0 0.0 0.0 0.0 20.9 0.0 14.4 DesignQueue: 0 9 1 5 4 0 0 0 0 2 0 6 Note: Queue reported is the number of cars per lane.

Traffix 8.0.0715

Appendix C Parking Memorandum

# HEXAGON TRANSPORTATION CONSULTANTS, INC.

#### Draft Memorandum

Date:	October 21, 2013
То:	Larry Wight
From:	Jill Hough
Subject:	Parking Demand for Proposed Cherryland Community Center

#### Introduction

Hexagon Transportation Consultants, Inc. has completed a parking analysis for the proposed community center in Cherryland, California (unincorporated Alameda County). This memorandum describes the parking needs associated with the proposed community center.

## **Project Description**

The proposed project is for a community center on 17,113 square feet of land adjacent to the Meeks Estate Park in Cherryland, California. There are 23 parking spaces planned on the site, that will be accessed from Hampton Road.

#### **Parking Demand**

An estimate of the parking demand created by the proposed project was based on rates for the recreational community center land use in the Institute of Traffic Engineers' Manual on *Parking Generation*, 4th edition. The total parking demand based on this ITE rate is presented in Table 1.

The resulting number of parking spaces needed for the proposed community center is 86 spaces. Since only 23 spaces are being planned on-site, an estimated 63 parking spaces will be needed off-site in the nearby vicinity.

The proposed project is located adjacent to the Meeks Estate park, which has a surface parking lot and some nearby on-street parking. The surface parking lot is accessed via Boston Road. The nearby on-street parking being considered is:

- On the north side of Hampton Rd, east of Boston Road,
- On the north side of Hampton Rd, west of Boston Road, and
- On Boston Road north of Hampton Rd (west side only).

The total number of available parking supply for the above locations plus the surface lot for the park was estimated at 74 spaces.

Parking demand was surveyed on one Saturday (October 5, 2013) and one Sunday (September 29, 2013) between the hours of Noon and 5 PM. The peak parking was recorded to occur on Saturday around 4 PM, with parking demand of 64 spaces. Based on this analysis, under peak conditions for Meeks Estate Park, approximately 10 spaces would be available for the proposed community center, compared with an estimated need for 63 additional parking spaces associated with the community center.

On Sunday, the peak parking demand was lower than on Saturday, with a recorded maximum parking demand of 29 spaces that occurred at approximately 4 PM and 5 PM. Based on analyzing conditions on Sunday, under peak conditions for Meeks Estate Park, approximately 45 spaces would be available for the











#### **Estimated Parking Demand**



proposed community center, compared with an estimated need for 63 additional parking spaces associated with the community center.

Anecdotal information was obtained from the Hayward Area Recreation and Park District (HARD), regarding the schedule of events that were registered for the two survey days. On Sunday September 29, activities included a party at one of the picnic sites. On Saturday October 5, the recorded activities also included a party at one of the picnic sites. Recorded events for both days were very similar, even though the parking demand recorded on both days varied fairly significantly.

Based on the findings, the amount of parking demand for both the existing park and the proposed community center will potentially be greater than the proposed parking supply plus existing parking. The parking demand estimated for the proposed community center is 86 spaces, 23 of which will be provided on site. This leaves a gap of 63 spaces. The estimated parking supply of the parking lot and existing on-street parking is 74 parking spaces. The parking utilization associated with the park would need to be 11 spaces or less, in order for the estimated parking demand of the community center to be met. If HARD is willing to coordinate activities then it could be possible to coordinate events at both the park and at the proposed community center such that adequate parking can be provided. Other options would be to provide additional parking near the site.