Appendix H

Acoustical Analysis Report

Aramis Solar Energy Generation and Storage Project

Acoustical Analysis Report

September 2020 | IPO-01.03

Prepared for:

Alameda County Planning Department 224 West Winton Avenue Hayward, CA 94544

Prepared by:

HELIX Environmental Planning, Inc. 11 Natoma Street, Suite 155 Folsom, CA 95630

Aramis Solar Energy Generation and Storage Project

Acoustical Analysis Report

Prepared for:

Alameda County Planning Department

224 West Winton Avenue Hayward, CA 94544

Prepared by:

HELIX Environmental Planning, Inc. 11 Natoma Street, Suite 155 Folsom, CA 95630

September 2020 | IPO-01.03

TABLE OF CONTENTS

<u>Section</u>	<u>1</u>		Page			
EXECUT	LIVE SUN	MMARY	ES-1			
1.0	INTRO	DUCTION	1			
	1.1	Purpose of the Report	1			
	1.2	Project Location	1			
	1.3	Project Description	1			
	1.4	Noise, Sound Level and Vibration Descriptors and Terminology	2			
		1.4.1 Descriptors	2			
		1.4.2 Terminology	3			
	1.5	Noise and Vibration Sensitive Land Uses	4			
	1.6	Regulatory Framework	4			
		1.6.1 Federal Guidelines				
		1.6.2 California Noise Control Act				
		1.6.3 Alameda County General Plan and East County Area Plan				
		1.6.4 Alameda County Noise Ordinance	5			
2.0	ENVIRO	ONMENTAL SETTING	6			
	2.1	Surrounding Land Uses	6			
	2.2	Existing Noise Environment				
3.0	ANALY	SIS, METHODOLOGY, AND ASSUMPTIONS	ES-1 ES-1 ES-1 ES-1 ES-1 1 tion Descriptors and Terminology 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5			
	3.1	Methodology	7			
		3.1.1 Noise Modeling Software				
	3.2	Assumptions	7			
		3.2.1 Construction	7			
		3.2.2 Operation	8			
	3.3	Guidelines for the Determination of Significance	10			
4.0	IMPAC	TS				
	4.1	Issue 1: Temporary or Permanent Increase in Noise Levels				
		4.1.1 Construction Noise				
		4.1.2 Decommissioning and Site Reclamation Noise	14			
		4.1.3 Operational Noise	14			
	4.2	Issue 2: Excessive Vibration	16			
		4.2.1 Construction Vibration	16			
		4.2.2 Operational Vibration	17			
	4.3	Issue 3: Airport Noise Exposure				
	4.4	Issue 4: Cumulative Noise Impacts				
		4.4.1 Cumulative Construction Noise				
		4.4.2 Cumulative Operational Noise				
5.0	LIST OF	F PREPARERS	19			
6.0	REFERE	ENCES	20			

TABLE OF CONTENTS (cont.)

LIST OF APPENDICES

- A Construction Noise Modeling Outputs
- B Equipment Manufacturer Data Sheets

LIST OF FIGURES

No. Title

Page

1	Regional Location	2
	Aerial Map	
	Site Plan	
4	Receptor Locations	4

LIST OF TABLES

No. <u>Title</u>

1 2 Ventialtion Fan Outdoor Sound Power......10 3 4 5 Operational Substation Noise......15 Operational Inverter Station and Energy Storage Noise15 6 7 8 9

ACRONYMS AND ABBREVIATIONS

ас	alternating current
ADT	average daily trips
ASHRAE	American Society of Heating, Refrigeration, and Air Conditioning Engineers
APN	Assessor's Parcel Number
CadnaA	Computer Aided Noise Abatement
Caltrans	California Department of Transportation
CEQA	California Environmental Quality Act
CNEL	Community Noise Equivalent Level
County	Alameda County
CPSF	Clean Power San Francisco
CUP	Conditional Use Permit
dB	decibel
dBA	A-weighted decibel
dc	direct current
EBCE	East Bay Community Energy
HVAC	heating, ventilation, and air conditioning
Hz	Hertz
I-580	Interstate 580
in/sec	inches per second
kHz	kilohertz
kV	kilovolt
L _{DN}	Day-Night sound level
L _{EQ}	time-averaged noise level
L _{MAX}	root mean squared maximum noise level
mPa	micro Pascal
MV	medium voltage
MW	megawatts
NSLU	noise sensitive land use
0&M	operation and maintenance
PG&E	Pacific Gas and Electric Company
PPV	peak particle velocity
PV	photovoltaic

ACRONYMS AND ABBREVIATIONS (cont.)

RCNM rpm	Roadway Construction Noise Model revolutions per minute
SF	square feet/foot
SPL	sound pressure level
STC	Sound Transmission Class
S _{WL}	Sound Power Level
TIS	Transportation Impact Study
TNM	Traffic Noise Model
USDOT	U.S. Department of Transportation

EXECUTIVE SUMMARY

This report presents an assessment of potential noise and vibration impacts during the construction, operation, and decommissioning of the proposed Aramis Solar Energy Generation and Storage Project (project). The project would construct a photovoltaic (PV) solar energy generation and storage facility with a capacity of 100 megawatts (MW) on approximately 410 acres in unincorporated Alameda County. Analysis within this report addresses the relevant issues listed in Section XIII, Noise, of Appendix G of the California Environmental Quality Act (CEQA) Guidelines.

Project construction would generate noise from the use of off-road construction equipment. Mitigation measure NOI-1 would restrict construction activity to the hours between 7:00 a.m. and 7:00 p.m. Monday through Friday, and between the hours of 8:00 a.m. and 5:00 p.m. on Saturday and Sunday. With implementation of the mitigation measure restricting the hours of noise generating activities, temporary project construction noise would be exempt from the County Noise Ordinance exterior noise standards. Construction would result in traffic noise from workers commuting to and from the project site and from trucks hauling material to and from the project site. The increase in ambient noise levels from project construction traffic on road segments in the project vicinity would not exceed the 3 dBA Day Night sound level (L_{DN}) threshold which represents the increase that is generally perceptible to humans in most outdoor environments. Construction noise impacts would be less than significant with mitigation incorporated.

Long-term on-site operational noise from equipment maintenance, PV panel washing, and vegetation management would not result in higher off-road equipment noise levels or longer activity duration than noise from off-road equipment currently used for agriculture and vegetation management on the project site and in the project vicinity. Noise from the project's substation electrical equipment would not exceed the County standard of 60 dBA for transformers and associated equipment in electrical substations, measured at the nearest NSLU. Noise from the project's inverter stations and energy storage buildings would not exceed the County daytime standard of 50 dBA or nighttime standard of 45 dBA. Project operational traffic would result in an increase in ambient noise levels along roads in the project vicinity of approximately 0.1 dBA L_{DN}, significantly below the 3 dBA L_{DN} threshold. Operational noise impacts would be less than significant.

The use of off-road equipment during project construction, including impact pile drivers and vibratory rollers, and the use of off-road equipment during operational maintenance activity would not result in groundborne vibration levels at the closest residential structure above the Federal Transit Administration (FTA) thresholds for risk of architectural damage to non-engineered wood and masonry structures. Groundborne vibration impacts would be less than significant.

The closest airport or airstrip to the project site is the Livermore Executive Airport, approximately 3.2 miles southwest. The project is not within the Livermore Executive Airport influence area or within any of the designated airport noise compatibility zones. The project would not expose people residing or working in the project area to excessive noise levels from airport operations.

This page intentionally left blank

1.0 INTRODUCTION

1.1 PURPOSE OF THE REPORT

This report analyzes potential noise and vibration impacts associated with the proposed Aramis Solar Energy Generation and Storage Project (project). The analysis includes a description of existing conditions in the project vicinity, an assessment of potential impacts associated with project construction, and an evaluation of project operational noise impacts. Analysis within this report addresses the relevant issues listed in Section XIII, Noise, of Appendix G of the California Environmental Quality Act (CEQA) Guidelines.

1.2 PROJECT LOCATION

The approximately 410-acre project site is located in the northeast area of unincorporated Alameda County, approximately 2.5 miles north of the City of Livermore. The project site is bounded by Manning Road to the north, North Livermore Avenue to the east, and a private driveway to the south. The western project site boundary generally follows the natural topography of Cayetano Creek and the adjacent hills. The project site comprises portions of four privately-owned parcels – Assessor's Parcel Numbers (APNs) 903-0006-001-02, 903-0007-002-01, 903-0006-003-07, and 902-0001-005-00. The project site consists of four noncontiguous development areas that are split into the following sections: the northern section, measuring approximately 103 acres; the central section, measuring approximately 269 acres; the southeastern section, measuring approximately 23 acres; and the southwestern section, measuring approximately 25 acres. The project site is within Sections 16 and 17 of Township 02 South, Range 02 East and unsurveyed land of the Las Positas Land Grant, Mount Diablo Base and Meridian. The project site is located within the "Tassajara, CA" and "Livermore, CA" U.S. Geologic Survey 7.5-minute quadrangles (see Figure 1, *Regional Location*, and Figure 2, *Aerial Map*).

1.3 **PROJECT DESCRIPTION**

The project is proposed by IP Aramis, LLC (a subsidiary of Intersect Power, LLC). The project applicant has applied to the Alameda County Community Development Agency for a Conditional Use Permit (CUP) from Alameda County to construct, operate, and maintain a solar photovoltaic (PV) and electric storage facility for at least 50 years and a Parcel Subdivision of APN 903-0006-001-02 to modify the eastern boundary of legal parcel of the proposed solar facility and create a distinct parcel. The solar facility would generate a 100 megawatts (MW) of PV power on approximately 410 acres. The project would provide solar power to utility customers by interconnecting to the nearby electricity grid at Pacific Gas and Electric Company's (PG&E) existing Cayetano 230 kilovolt (kV) substation located adjacent and interior to the project site. The project would serve East Bay Community Energy (EBCE), Clean Power San Francisco (CPSF), and/or PG&E customers by providing local generation capacity under a long-term contract.

The project would include individual PV modules arranged in rows onto single-axis tracker racking systems, which would in turn be affixed to steel piles. Each row (or array) would track the sun during the day, from east to west, to optimize power generation of the facility. The arrays would be connected by low-voltage underground or above-ground electrical wiring to a central inverter station or to string inverters located throughout the facility, where the electricity would be converted from direct current (DC) to alternating current (AC). The system would then step up the voltage of the electricity to a

medium voltage (MV) of 34.5 kV (or lower suitable voltage) to match the collection system voltage. The power output from the inverter station would be conveyed to the on-site substation via collection cables. Medium-voltage lines would be buried for a majority of their length but would emerge above-ground and be mounted on up to two overhead wooden utility poles on either side of Manning Avenue and up to 10 additional wooden poles to cross Cayetano Creek and its tributaries, to cross an access driveway, and where a connection to the substation must be overhead.

The project substation would provide the circuit breakers, switches, protection relays, and other necessary equipment to reliably and safely protect the electrical infrastructure. The substation would step up the MV collected energy to the interconnection voltage via one or more step up transformers. The substation would occupy an approximately 5,000-square-foot area in a 0.9-acre dedicated area and would be located adjacent to the north of the PG&E Cayetano substation, allowing the gen-tie to be either overhead or underground. The substation would be set back from North Livermore Avenue by at least 250 feet. Overhead lines would be constructed on either tubular steel poles or wood H-frames and may be constructed to be single-circuit or double-circuit.

A battery storage system would be located on-site adjacent to the west of the PG&E Cayetano substation. The battery storage system would be designed to accept between 75 and 100 MW of system charging, and subsequently dispatch stored electricity during times of peak demand. The system would either be housed in electrical containers or in up to four 100-foot by 180-foot buildings. Various sizes and numbers of electrical enclosures would be used depending on the final battery vendor selected. Up to 50 large electrical enclosures or up to 1,000 small electrical enclosures would be clustered together to make up the battery storage system. Battery buildings or containers would have foundations with a cumulative floor area of 3 acres or less. Low voltage wiring from battery enclosures would be underground and converted as a bi-directional inverter station and transformed at the shared transformer.

An approximately 400-square-foot operation and maintenance (O&M) building located near the project substation would be used to accommodate up to four permanent O&M staff. Water for the O&M building would be stored in a tank and filled on an as-needed basis. Wastewater would be held in a tank system and removed routinely (see Figure 3, *Site Plan*).

Long-term operation of the project would involve monitoring of the site remotely and up to four permanent staff on the site at a time for ongoing facility maintenance and repairs. Up to 12 workers could be on site once annually for module washing. The project would promote continued agricultural use of the project site. The proposed program for concomitant agricultural land uses during operation of the solar facility would be outlined in an Agricultural Management Plan prepared for the project and could include livestock grazing and commercial beekeeping operations.

1.4 NOISE, SOUND LEVEL AND VIBRATION DESCRIPTORS AND TERMINOLOGY

1.4.1 Descriptors

All noise level or sound level values presented herein are expressed in terms of decibels (dB), with A-weighting (dBA) to approximate the hearing sensitivity of humans. Time-averaged noise levels are expressed by the symbol L_{EQ} , with a specified duration. The Community Noise Equivalent Level (CNEL) is a 24-hour average, where noise levels during the evening hours of 7:00 p.m. to 10:00 p.m. have an

Regional Location

Figure 1

1,250 Feet

HELIX Environmental Planning

F

Aerial Map Figure 2

Site Plan Figure 3 added 5 dBA weighting, and noise levels during the nighttime hours of 10:00 p.m. to 7:00 a.m. have an added 10 dBA weighting. This is similar to the Day Night sound level (L_{DN}), which is a 24-hour average with an added 10 dBA weighting on the same nighttime hours but no added weighting on the evening hours. Sound levels expressed in CNEL or L_{DN} are always based on dBA. The maximum sound level (L_{MAX}) is the root mean squared (RMS) maximum level during a measurement period or noise event. This is different from "peak", which is the maximum level of the raw noise source. The minimum sound level (L_{MIN}) is the RMS minimum level during a measurement period. These metrics are used to express noise levels for both measurement and municipal regulations, as well as for land use guidelines and enforcement of noise ordinances.

1.4.2 Terminology

1.4.2.1 Sound, Noise, and Acoustics

Sound can be described as the mechanical energy of a vibrating object transmitted by pressure waves through a liquid or gaseous medium (e.g., air) to a hearing organ, such as a human ear. Noise is defined as loud, unexpected, or annoying sound.

In the science of acoustics, the fundamental model consists of a sound (or noise) source, a receiver, and the propagation path between the two. The loudness of the noise source and obstructions or atmospheric factors affecting the propagation path to the receiver determines the sound level and characteristics of the noise perceived by the receiver. The field of acoustics deals primarily with the propagation and control of sound.

Sound Frequency

Continuous sound can be described by frequency (pitch) and amplitude (loudness). A low-frequency sound is perceived as low in pitch. Frequency is expressed in terms of cycles per second, or Hertz (Hz) (e.g., a frequency of 250 cycles per second is referred to as 250 Hz). High frequencies are sometimes more conveniently expressed in kilohertz (kHz), or thousands of Hertz. The audible frequency range for humans is generally between 20 Hz and 20,000 Hz.

Sound Pressure Levels and Decibels

The amplitude of pressure waves generated by a sound source determines the loudness of that source. Sound pressure amplitude is measured in micro-Pascals (mPa). One mPa is approximately one hundred billionth (0.00000000001) of normal atmospheric pressure. Sound pressure amplitudes for different kinds of noise environments can range from less than 100 to 100,000,000 mPa. Because of this wide range of values, sound is rarely expressed in terms of mPa. Instead, a logarithmic scale is used to describe sound pressure level (SPL) in terms of dBA. The threshold of hearing for the human ear is about 0 dBA, which corresponds to 20 mPa.

Because decibels are logarithmic units, SPL cannot be added or subtracted through standard arithmetic. Under the decibel scale, a doubling of sound energy corresponds to a 3-dBA increase. In other words, when two identical sources are each producing sound of the same loudness, the resulting sound level at a given distance would be 3 dBA higher than from one source under the same conditions. For example, if one automobile produces an SPL of 70 dB when it passes an observer, two cars passing simultaneously would not produce 140 dBA—rather, they would combine to produce 73 dBA. Under the decibel scale, three sources of equal loudness together produce a sound level 5 dBA louder than one source.

Under controlled conditions in an acoustical laboratory, the trained, healthy human ear is able to discern 1-dBA changes in sound levels, when exposed to steady, single-frequency ("pure-tone") signals in the mid-frequency (1,000 Hz–8,000 Hz) range. In typical noisy environments, changes in noise of 1 to 2 dBA are generally not perceptible. It is widely accepted, however, that people begin to detect sound level increases of 3 dB in typical noisy environments. Further, a 5-dBA increase is generally perceived as a distinctly noticeable increase, and a 10-dBA increase is generally perceived as a doubling of loudness.

No known studies have directly correlated the ability of a healthy human ear to discern specific levels of change in traffic noise over a 24-hour period. Many ordinances, however, specify a change of 3 CNEL or L_{DN} as the significant impact threshold. This is based on the concept of a doubling in noise energy resulting in a 3-dBA change in noise, which is the amount of change in noise necessary for the increase to be perceptible to the average healthy human ear.

1.4.2.2 Groundborne Vibration Metrics

Groundborne vibration consists of rapidly fluctuating motions or waves transmitted through the ground with an average motion of zero. Sources of groundborne vibrations include natural phenomena and anthropogenic causes (e.g., explosions, machinery, traffic, trains, construction equipment). Vibration sources may be continuous (e.g., factory machinery) or transient (e.g., explosions). Several different methods are typically used to quantify vibration amplitude. One is the peak particle velocity (PPV); another is the RMS velocity. The PPV is defined as the maximum instantaneous positive or negative peak of the vibration wave. For the purposes of this analysis, a PPV descriptor with units of inches per second (in/sec) is used to evaluate construction-generated vibration for building damage and human complaints. Generally, a PPV of less than 0.08 in/sec does not produce perceptible vibration. At 0.12 PPV in/sec is the level at which there is a risk of architectural damage (e.g., cracking of plaster) to historical buildings and other vibration-sensitive structures and the level at which continuous vibration may become noticeable to building occupants. A level of 0.20 PPV in/sec is commonly used as a threshold for risk of architectural damage to non-engineered timber and masonry buildings (FTA 2018).

1.5 NOISE AND VIBRATION SENSITIVE LAND USES

Noise-sensitive land uses (NSLUs) are land uses that may be subject to stress and/or interference from excessive noise, including residences, hospitals, schools, hotels, resorts, libraries, sensitive wildlife habitat, or similar facilities where quiet is an important attribute of the environment. Noise receptors are individual locations that may be affected by noise. The closest existing sensitive receptors to the project site are rural single-family homes with the closest residential building located approximately 60 feet from the project site. Figure 4, *Receptor Locations*, shows the property line location closest to future project noise sources for the closest existing residences around the project site. There are no schools, hospitals, or daycare facilities within 1 mile of the project site.

1.6 **REGULATORY FRAMEWORK**

The project site is located in an unincorporated area of Alameda County. Regulatory requirements related to environmental noise are typically promulgated at the local level. However, federal and State agencies provide standards and guidelines to local jurisdictions. Noise standards for Alameda County, along with the State CEQA Guidelines, were considered in the noise assessment.

1,250 Feet

¢

0

Source: Base Map Layers (DigitalGlobe 2018)

Receptor Locations

Figure 4

1.6.1 Federal Guidelines

1.6.1.1 U.S. Environmental Protection Agency Recommendations

The USEPA provides guidance in Information on Levels of Environmental Noise Requisite to Protect Health and Welfare with an Adequate Margin of Safety (NTIS 550\9-74-004, EPA, Washington, D.C., March 1974), which is commonly referenced as the "Levels Document." The Levels Document establishes a L_{DN} of 55 dBA as the requisite level, with an adequate margin of safety for areas of outdoor uses, including residential and recreational areas. This document does not constitute USEPA regulations or standards but identifies safe levels of environmental noise exposure without consideration of costs for achieving these levels or other potentially relevant considerations. It is intended to "provide State and local governments as well as the Federal government and the private sector with an informational point of departure for the purpose of decision-making." The agency is careful to stress that the recommendations contain a factor of safety and do not consider technical or economic feasibility issues and therefore should not be construed as standards or regulations.

1.6.2 California Noise Control Act

The California Noise Control Act is a section within the California Health and Safety Code that describes excessive noise as a serious hazard to the public health and welfare and that exposure to certain levels of noise can result in physiological, psychological, and economic damage. It also finds that there is a continuous and increasing bombardment of noise in the urban, suburban, and rural areas. The California Noise Control Act declares that the State of California has a responsibility to protect the health and welfare of its citizens by the control, prevention, and abatement of noise. It is the policy of the State to provide an environment for all Californians free from noise that jeopardizes their health or welfare.

1.6.3 Alameda County General Plan and East County Area Plan

The Alameda County General Pan Noise Element does not contain policies or standards for acceptable noise levels. The East County Area Plan contains one policy pertaining to acceptable noise levels and applicable to the project (Alameda County 2000):

• Policy 288: The County shall endeavor to maintain acceptable noise levels throughout East County.

1.6.4 Alameda County Noise Ordinance

The Alameda County Code Chapter 6.60, *Noise*, contains ordinances to control unnecessary, excessive and annoying noise in the county. The following sections would be applicable to the project (Alameda County 2020):

6.60.040 - Exterior noise level standards.

A. It is unlawful for any person at any location within the unincorporated area of the county to create any noise or to allow the creation of any noise on property owned, leased, occupied or otherwise controlled by such person which causes the exterior noise level when measured at any single- or multiple-family residential, school, hospital, church, public library or commercial

properties situated in either the incorporated or unincorporated area to exceed the noise level standards as set forth in Table 6.60.040A [shown in this report as Table 1].

Receiving Land Use — Single- Or Multiple-Family Residential, School, Hospital, Church or Public Library Properties Noise Level Standards, dBA								
CategoryCumulative Number of Minutes in any one-hour time periodDaytimeNightt7 a.m. to 10 p.m.10 p.m. to								
1	30	50	45					
2	15	55	50					
3	5	60	55					
4	1	65	60					
5	0	70	65					

Table 1 ALAMEDA COUNTY NOISE LEVEL STANDARDS

Source: Alameda County Code Table 6.60.040A

- B. In the event the measured ambient noise level exceeds the applicable noise level standard in any category above, the applicable standard shall be adjusted so as to equal said ambient noise level.
- E. Notwithstanding the noise level standards set forth in this section, the noise level standard applicable to the emission of sound from transformers, regulators, or associated equipment in electrical substations shall be 60 dBA.

6.60.070 - Special provisions or exceptions.

E. Construction. The provisions of this chapter shall not apply to noise sources associated with construction, provided said activities do not take place before 7 a.m. or after 7 p.m. on any day except Saturday or Sunday, or before eight a.m. or after five p.m. on Saturday or Sunday.

2.0 ENVIRONMENTAL SETTING

2.1 SURROUNDING LAND USES

Land uses north, south, east of the northern section, and west of the project site include row crop cultivation, cattle grazing, rural residential housing, agricultural outbuildings, small-scale ground-mounted solar systems, and open space. An approximately 59-acre solar PV facility is proposed by SunWalker Energy, Livermore Community Solar Farm, east of the central section of the project site and northeast of the intersection of North Livermore Avenue and May School Road. The existing PG&E Cayetano substation is located west of the terminus of May School Road at North Livermore Avenue. The project site surrounds the existing substation to the north, west, and south. Refer to Figure 2 for an aerial image of the project site and surrounding land uses.

2.2 EXISTING NOISE ENVIRONMENT

The project site is located in a rural agricultural area of the County and is generally undeveloped. The site is currently used for oat and hay cultivation and cattle grazing. Noise sources in the project vicinity

include seasonal agricultural equipment use for crop cultivation, traffic on North Livermore Avenue and other County roads, and electrical equipment [e.g., transformers] in the existing PG&E Cayetano substation.

3.0 ANALYSIS, METHODOLOGY, AND ASSUMPTIONS

3.1 METHODOLOGY

3.1.1 Noise Modeling Software

Modeling of the exterior noise environment for this report was accomplished using the computer noise model Computer Aided Noise Abatement (CadnaA) version 2017. CadnaA is a model-based computer program developed by *DataKustik* for predicting noise impacts in a wide variety of conditions. CadnaA assists in the calculation, presentation, assessment, and mitigation of noise exposure. It allows for the input of project-related information, such as noise source data, barriers, structures, and topography to create a detailed CadnaA model, and uses the most up-to-date calculation standards to predict outdoor noise impacts. The noise models used in this analysis were developed from Computer Aided Design (CAD) plans provided by the project applicant. Input variables included electrical equipment and building air conditioning system reference noise levels.

Modeling of the exterior transportation noise environment for this report was accomplished using the Traffic Noise Model (TNM) version 2.5. The TNM was released in February 2004 by the U.S. Department of Transportation (USDOT) and calculates the daytime average hourly L_{EQ} from three-dimensional model inputs and traffic data (USDOT 2004). The one-hour L_{EQ} noise level is calculated utilizing peak-hour traffic; when peak-hour traffic data is limited, peak-hour traffic volumes can be estimated based on the assumption that 10 percent of the average daily traffic would occur during a peak hour. The model-calculated one-hour L_{EQ} noise output is the equivalent to the L_{DN} (Caltrans 2013).

Project construction noise was analyzed using the Roadway Construction Noise Model (RCNM; USDOT 2008), which utilizes measured and estimated of sound levels from standard construction equipment.

3.2 ASSUMPTIONS

3.2.1 Construction

Project construction would be completed in four phases: Phase 1 site preparation (30 days), Phase 2 photovoltaic installation (150 days), Phase 3 electrical and gen-tie installation (75 days), and Phase 4 general construction operations, site clean-up and restoration (175 days). Phases 2 and 3 would occur concurrently and Phase 4 would span the entire construction duration (concurrent with Phases 1, 2, and 3). Phase 3 includes building construction and architectural coatings for the O&M and energy storage buildings.

3.2.1.1 Off-road Equipment

Construction would require the use of equipment throughout the site. Construction activities would use a variety of construction equipment including, but not limited to graders, dozers, loaders/backhoes, trenchers, cranes, forklifts, water trucks, vibratory rollers, and piledrivers.

The most likely source of vibration during project construction would be pile drivers (used to install the PV panel rack system) and vibratory rollers (used to achieve soil and gravel compaction as part of building foundation and access road construction.

3.2.1.2 Construction Traffic

Project construction activities would result in vehicles traveling to and from the project site including worker commute vehicles and trucks hauling the project electrical equipment, construction materials, and water. The project construction traffic was analyzed in the *Aramis Solar Energy Generation and Storage Project Transportation Impact Study* (TIS). The maximum worker commute trips would be 1,500 daily trips and 375 peak hour trips. The maximum truck haul trips would be 121 daily trips and 14 peak hour trips (CHS 2020). In addition, up to 30 truck trips per day (3 trips during the peak hour) may be required to haul water to the project site for dust suppression. The project construction traffic trip distribution would be 90 percent on North Livermore Avenue between the project site and Interstate 580 (I-580) and 10 percent on Manning Road between to project site and Morgan Territory Road (CHS 2020). The TIS includes intersection traffic counts for the I-580/North Livermore Avenue interchange and for Manning Road/Morgan Territory Road taken in February 2020. For the purpose of traffic noise modeling, existing traffic was assumed to consist of a typical mix of vehicle types for California rural roads: 96 percent autos and light trucks; 3 percent medium trucks; and 1 percent heavy trucks.

3.2.2 Operation

3.2.2.1 Vehicular Traffic

While daily monitoring of the site would occur remotely, up to four permanent staff could be on the site at a time for ongoing facility maintenance and repairs. Up to 12 workers could be on the site once annually for module washing. To model the most conservative (highest) daily operational traffic noise, 12 workers were assumed be on the site each day with the same trip assumptions as the construction traffic: two commute trips per employee per day and two off-site trips per employee per day for a total of 48 maximum daily trips and 12 peak hour trips. The off-site employee trips include up to 4 truck trips per day to haul water to the project site. Operational trip distribution was assumed to be the same as the construction trip distribution analyzed in the TIS: 90 percent on North Livermore Avenue between the project site and I-580, and 10 percent on Manning Road between the project site and Morgan Territory Road.

3.2.2.2 Electrical Equipment

Tracking Systems

Each row of PV panels would be equipped with a small electric motor and hydraulic or gear system to allow the panels to track the sun from east to west through the day. Typical one-axis tracking systems rotate the row of panels between 3 and 5 degrees approximately every 15 minutes during daylight. Each

tracking movement would take a few seconds. Once or twice per day, a longer movement of 30 seconds to one minute would occur to place the panels in the stow position or to move the panels in preparation for sunrise. Noise from the tracking systems is anticipated to be significantly lower than, and not discernable from, the inverter and transformer noise, described below, and is not included in the operational noise modeling.

String Inverter Stations

The operational noise modeling assumed that string inverter stations would be dispersed through the project at 29 sites within the PV modules (see Figure 3). Specifications for the project's inverter stations had not been developed at the time of this analysis. The project applicant provided specifications for a typical system that could be used: each PV power conditioning system (string inverter station) would convert up to 4,200 kW of DC power collected from the PV panels to AC power and step up the voltage to 34.5 kV for transmissions to the project substation. The power conditioning system would include inverters housed in an electrical enclosure with cooling fans, a step-up transformer, and associated electrical connection and control panels. The system specifications indicate a maximum sound level of 75 dBA at 3 feet for the inverter enclosure. The power conditioning system specifications do not indicate sound levels for the transformer, regulators, and reactors provides maximum audible sound level specifications. For a liquid immersed 4,200 kilo volt-amps (kVA) transformer with auxiliary cooling (pump and heat exchanger/fan), the highest average sound power level would be 69 dBA (NEMA 2000). Noise from the string inverter stations would only occur during daylight hours when the PV panels are generating electricity.

Substation

The project substation would require one or more transformers to step up the 34.5 kV power from the string inverter stations to the 230 kV power required for tie-in to the existing PG&E Cayetano substation. Specifications for the project's substation transformer had not been developed at the time of this analysis. Noise levels for the substation were modeled assuming one transformer with a capacity of 150,000 kVA (150 percent of the project's PV generation capacity). Per the NEMA standards, for a liquid immersed 150,000 kVA transformer with second stage auxiliary cooling (pump and heat exchanger/fan), the highest average sound power level would be 87 dBA (NEMA 2000). The substation would also include protective switches (e.g., circuit breakers) which can produce impulsive noise (very short noise events). Protective switching devices would only activate in emergency situations (e.g., power surges) and are not included as noise sources in the modeling.

Energy Storage

Specification for the project's energy storage buildings had not been developed at the time of this analysis. Is was assumed that the energy storage buildings would have ventilation/cooling fans to circulate air through the battery rooms. Each of the four buildings was assumed to have six ventilation fans mounted on the exterior walls. This analysis assumes each fan would have a ventilation capacity of approximately 5,000 cubic feet per minute, using a 5-horsepower motor turning a 20-inch fan at approximately 1,100 revolutions per minute. Based on data from Greenheck Fan Corporation, each fan would have an overall outlet noise sound power level of 91 dBA. The manufacturer's noise data is provided below in Table 2, *Ventilation Fan Outdoor Sound Power*. The manufacturer's data sheets are

included in Appendix B. Energy storage building ventilation fans were assumed to operate in steady state 24 hours per day.

Table 2
VENTILATION FAN OUTDOOR SOUND POWER

	Noise Leve	Overall Noise Level in								
63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz	A-weighted Scale (dBA) ¹		
91	87	83	78	77	71	66	61	92		

Source: Greencheck Double Width Centrifugal Fan Catalog Supplement (see Appendix B)

Hz = hertz; kHz = kilohertz

 $^{\rm 1}$ $\,$ Sound Power Levels (S_WL) $\,$

Control equipment rooms within the energy storage buildings could require temperature control through the use of air conditioning systems. Specific air conditioning planning information for the project including the area of conditioned space, unit types, and locations was not available at the time of the analysis. To be conservative by analyzing the highest potential noise, one-third of each energy storage building was assumed to be conditioned and the air conditioning system was assumed to be mounted at ground level outside of each energy storage building without any sound enclosure. Standard air conditioning planning assumes one ton of air conditioning for every 350 SF of conditioned space (American Society of Heating, Refrigeration, and Air Conditioning Engineers [ASHRAE] 2012). Based on 6,000 SF of conditioned space, one 20-ton unit would be required for each energy storage building. This analysis assumes a 20-ton Carrier Centurion Model 50PG24 with a sound rating of 84.9 dBA sound power. This unit produces noise levels of 52 dBA L_{EQ} at 50 feet. The manufacturer's noise data is provided below in Table 3, *Carrier 50PG24 Outdoor Sound Power*. The manufacturer's data sheets are included in Appendix B. Air conditioning systems were assumed to operate in steady state during the daytime and for 30 minutes out of each hour during the nighttime.

Table 3 CARRIER 50PG24 OUTDOOR SOUND POWER

N	oise Levels i	Overall Noise Level in					
125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz	A-weighted Scale (dBA) ¹
90.0	86.3	83.6	82.9	80.3	74.9	71.4	84.9

Source: Carrier 50PG03-28 Product Data (see Appendix B)

Hz = hertz; kHz = kilohertz

¹ Sound Power Levels (S_{WL})

3.3 GUIDELINES FOR THE DETERMINATION OF SIGNIFICANCE

The following significance thresholds are based on Section XIII, Noise, of Appendix G of the State CEQA Guidelines. A significant impact is identified if the project would result in any of the following:

- (1) Generation of a substantial temporary or permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies;
- (2) Generation of excessive groundborne vibration or groundborne noise levels; and

(3) For a project located within the vicinity of a private airstrip or an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels.

The significance of noise and vibration levels, or the increase in noise levels as a result of the project, are based on the following standards from the County Code or other agencies:

- **Temporary Construction Noise**: The County Code, (Section 6.60.070), specifies that construction activities are exempt from the provisions in the Alameda County Noise Control Ordinance if they are limited to the hours between 7:00 a.m. to 7:00 p.m., Monday through Friday, and between 8:00 a.m. to 5:00 p.m. on Saturdays.
- Traffic Noise: For traffic-related noise, impacts would be considered significant if
 implementation of the project would result in an increase of the existing ambient noise levels by
 5 dBA or more, where the existing ambient level is less than 60 dBA L_{DN}; or an increase of the
 existing ambient noise level by 3 dBA or more, where the existing ambient level is 60 dBA L_{DN} or
 more.
- **Permanent Operational Noise:** Noise generated by the project substation electrical equipment (e.g., transformers) would be significant if the level would exceed the County Code (Section 6.60.040 [E]) standard of 60 dBA for transformers, regulators, or associated equipment in electrical substations, measured at the receiving residential property. Assuming that the string inverter stations and energy storage building cooling/ventilation systems would operate for 30 or more minute in at least one hour per day, the noise generated by the string inverter stations and energy storage building cooling/ventilation systems would be significant if their combined noise would exceed the County Code (Section 6.040[A], Table 6.60.040A, Category 1) standard of 50 dBA L_{EQ} during daytime hours (7:00 a.m. to 10:00 p.m.) or 45 dBA LEQ during nighttime hours (10:00 p.m. to 7:00 a.m.), measured at the receiving residential property line.
- **Construction Groundborne Vibration:** The County has not adopted thresholds for determining the significance of groundborne vibrations. The Federal Transit Administration (FTA) has guidelines and recommendations for ground-borne vibration thresholds for damage to structures based on the age and/or construction type of the structures near construction activity. Per the FTA, a ground-borne vibration level of 0.2 inch-per-second PPV would be considered the damage threshold criterion for non-engineered timber and masonry buildings and a ground-borne vibration level of 0.12 inch-per-second PPV would be considered the damage threshold criterion for structures usceptible to vibration damage (e.g., historical structures; FTA 2018). This analysis assumes a conservative threshold of 0.2 inch-per-second.

4.0 IMPACTS

4.1 ISSUE 1: TEMPORARY OR PERMANENT INCREASE IN NOISE LEVELS

4.1.1 Construction Noise

Construction activities would result in noise from the use of heavy construction equipment on the project site, from heavy trucks hauling electrical equipment, construction materials and water to the site, and from worker and vendor vehicles traveling to and from the site.

4.1.1.1 Off-Road Equipment Noise

The County Code, (Section 6.60.070), specifies that construction activities are exempt from the provisions in the County Noise Control Ordinance if they are limited to the hours between 7:00 a.m. to 7:00 p.m., Monday through Friday, and between 8:00 a.m. to 5:00 p.m. on Saturdays.

The most substantial noise increases from construction activities that may affect nearby residences would occur during earth moving operations for installation of access roads and equipment pads. Construction equipment noise would be temporary and sporadic and would not be concentrated near residential property lines for extended periods. During these operations it is anticipated that a grader, dozer, and frontend loader could all be operating simultaneously within 50 feet of a residential property line. The combined total noise of all equipment at the residential property line would be 83.4 dBA L_{EQ}, above the 45 dBA to 70 dBA standard (depending on time of day and cumulative minutes per hour for the noise) for exterior noise received by residential land uses. The output from the construction noise model is included in Appendix A to this report. Provided that construction activity conforms to the hourly restrictions within the County Noise Control Ordinance, noise level limits would not apply. However, if noise generating construction activities would occur outside of the allowable times, impacts would be potentially significant. Mitigation measure NOI-1 would restrict the hours of construction activity to those specified in the County ordinance. Implementation of mitigation measure NOI-1 would reduce potential construction off-road equipment noise impacts to a less than significant level.

4.1.1.2 On-Road Construction Traffic Noise

Noise levels at residential properties located along the project's proposed construction traffic routes were estimated using the TNM, described in Section 3.1. As discussed in Section 3.2., 90 percent of construction traffic would utilize North Livermore Avenue between the project site and I-580 and 10 percent of the construction traffic would utilize Manning Road north of the project. The closest residence to the construction traffic affected road segments centerlines would be 30 feet from North Livermore Avenue (approximately 1,600 feet south of the project site), and 35 feet from Manning Road (approximately 160 feet north of the project site). The predicted traffic noise level for the project affected road segments is shown in Table 4, *Construction Traffic Noise*.

	Distance to Nearest NSLU	NSLU	dBA L _{DN} at Nearest NSLU ²						
Roadway Segment	(feet) ¹	Туре	Existing	2011 + Project	Change in L _{DN}				
North Livermore Avenue									
Project Site to westbound I-580	30	SF	69.8	71.8	+2.0				
Manning Road									
Project Site to Morgan Territory Road	35	SF	65.9	66.5	+0.6				

Table 4 CONSTRUCTION TRAFFIC NOISE

Source: TNM 2.5; CHS 2020

I-580 = Interstate 580; MF = SF = Single-Family Residential.

¹ Distance measured from roadway centerline.

² Noise level assuming all traffic at the posted speed limit of 50 miles per hour.

As shown in Table 4, existing noise levels at all roadway segments at the closest residences already exceed 60 dBA L_{DN} without the project. With the project construction traffic included, the maximum increase in noise levels be 2.0 dBA L_{DN} and would not exceed 3 dBA L_{DN} along any roadway segment. In addition, project construction traffic would be temporary and would cease once the project is operational. Therefore, project construction traffic noise would not result in the generation of a substantial temporary increase in ambient noise levels in the vicinity of the project and the impact would be less than significant.

4.1.1.3 Mitigation Measures

- **NOI-1 Construction Hourly Limits.** Prior to issuance of any project Grading Permit or Building Permit, the County shall confirm that the Grading Plan, Building Plans, and construction specifications stipulate that the following construction noise mitigation measures shall be implemented for all project construction activity:
 - Restrict noise-generating activities at the construction site or in areas adjacent to the construction site to the hours between 7:00 a.m. to 7:00 p.m., Monday through Friday, and between 8:00 a.m. to 5:00 p.m. on Saturdays, Sundays and County recognized public holidays; and
 - Post a publicly visible sign at the primary project construction entrance listing the permitted construction days and hours, complaint procedures and who to notify in the event of a problem. The sign shall also include a listing of telephone numbers to be used during regular construction hours and off-hours to contact both the County and the construction contractor regarding noise complaints.
 - If construction activities occur outside of the specified hours, noise levels shall be subject to the limits listed in Table 6.60.040A of the Alameda County Noise Control Ordinance.

4.1.1.4 Significance After Mitigation

Implementation of mitigation measure NOI-1 would reduce potential construction noise impacts to a less than significant level.

4.1.2 Decommissioning and Site Reclamation Noise

The solar facility is anticipated to have an operating life of at least 50 years. Once the operating life of the facility is over, it would be either repowered or decommissioned. If repowering were to be pursued, it would require the facility owner to obtain all required permit approvals. Project decommissioning would occur in accordance with the expiration or termination of the CUP and would involve the removal of above-grade facilities, buried electrical conduit, and all concrete foundations in accordance with a Decommissioning Plan. Equipment would be repurposed off-site, recycled, or disposed of in a landfill as appropriate.

Decommissioning is anticipated to take approximately six months to complete and would occur in 2073 or later. Decommissioning would be completed in three phases: Phase 1 would involve shutting down the systems and removing hazardous materials and wiring; Phase 2 would include removing the PV modules, inverters, substation(s), switching station, and energy storage system; Phase 3 would include removing site fencing and driveways and the final soils reclamation process. Decommissioning and reclamation activities are anticipated to require approximately 200 workers, generating 800 maximum daily worker trips and 40 daily truck trips.

Because it is anticipated that the intensity of project decommissioning and reclamation activities would be similar to or less than project construction activities, the resulting off-road equipment traffic noise for decommissioning would be assumed to be similar to or less than that resulting from project construction. As discussed in Section 4.1.1.2, above, construction traffic noise levels would not result in a significant increase in ambient noise levels and noise for off-road equipment use would be exempt from the noise standards in the County Noise Control Ordinance. Therefore, project decommissioning and reclamation noise would not result in a temporary increase in ambient noise levels in excess of standards and the impact would be less than significant.

4.1.3 Operational Noise

4.1.3.1 Maintenance Noise

Operational sources of noise for the project would include periodic equipment maintenance, PV panel washing, and vegetation management that could require the use of off-road equipment including all-terrain vehicles, small tractors, portable generators, and portable water trailers with a pump. These periodic operational activities would occur for a few days per year and equipment use would be sporadic and would move throughout the project site. In addition, the use off-road equipment for maintenance is not anticipated to exceed the noise level of equipment currently used for agriculture and vegetation management (based on use intensity or duration) on the project site and in the project vicinity.

4.1.3.2 Stationary Source Noise

The project's electrical equipment and building HVAC system noise was modeled as described in Section 3.2, above. The results of the project substation electrical equipment noise modeling for each of the modeled receptor locations is shown in Table 5, *Operational Substation Noise*. The results of the project string inverter station and energy storage building noise modeling (combined noise of all sources) is shown in Table 6, *Operational Inverter Station and Energy Storage Noise*. See Figure 4 for modeled receptor locations.

Dessiver	Dessiver Tures		Noise Level (dBA LEQ)				
Receiver	Receiver Type	Estimated Noise	Standard ¹	Exceed Standards?			
R1	Rural Residential	43.4	60	No			
R2	Rural Residential	48.3	60	No			
R3	Rural Residential	55.3	60	No			
R4	Rural Residential	39.9	60	No			
R5	Rural Residential	30.1	60	No			
R6	Rural Residential	30.9	60	No			
R7	Rural Residential	29.6	60	No			
R8	Rural Residential	31.4	60	No			
R9	Rural Residential	30.7	60	No			
R10	Rural Residential	28.1	60	No			
Source: Cadna A version 2019							

Table 5 OPERATIONAL SUBSTATION NOISE

Source: CadnaA version 2019

¹ 60 dBA L_{EQ} exterior noise standard for transformers and associated electrical substation equipment per County Noise Ordinance Section 6.60.040 (E).

		Noise Level (dBA L _{EQ})						
Receiver	Dessiver Trees	Daytime (7 a.m.	to 10 p.m.)	Nighttime (10 p	Exceed			
Receiver	Receiver Type	Estimated Noise	Standard ¹	Estimated Noise	Standard	Standards?		
R1	Rural Residential	40.4	50	34.8	45	No		
R2	Rural Residential	43.9	50	42.3	45	No		
R3	Rural Residential	42.0	50	39.7	45	No		
R4	Rural Residential	43.4	50	26.1	45	No		
R5	Rural Residential	43.7	50	19.0	45	No		
R6	Rural Residential	42.4	50	18.8	45	No		
R7	Rural Residential	41.2	50	17.9	45	No		
R8	Rural Residential	40.9	50	20.0	45	No		
R9	Rural Residential	39.5	50	19.6	45	No		
R10	Rural Residential	41.4	50	29.9	45	No		

Table 6 OPERATIONAL INVERTER STATION AND ENERGY STORAGE NOISE

Source: CadnaA version 2019; County Noise Ordinance Sections 6.60.040 (E)

¹ 50 dBA L_{EQ} daytime and 45 dBA L_{EQ} exterior noise standard per County Noise Ordinance Table 6.60.040A for 30 minutes or more cumulative minutes of noise in any one hour.

As shown in Table 5, the maximum noise level from the project substation electrical equipment, measured at the closest residential property line, would be 55.3 dBA and would not exceed the County Noise Ordinance standard of 60 dBA for transformers and associated equipment in electrical substations. As shown in Table 6, the maximum combined noise level from the project's inverter stations and energy storage buildings, measured at the closest residential property line, would be 43.9 dBA during the daytime and 42.3 dBA during the nighttime. These noise levels would not exceed the County Noise Ordinance standard of 50 dBA and 45 dBA, respectively. Therefore, the project's operational stationarity source noise would not result in a permanent increase in ambient noise levels in the vicinity of the project in excess of standards established in the local general plan or noise ordinance and the impact would be less than significant.

4.1.3.3 **Transportation Noise**

Noise levels at residential properties located along the project-affected road segments were estimated using TNM and the anticipated maximum 12 peak hourly operational trips, as discussed in Section 3.2. 90 percent of project traffic would utilize North Livermore Avenue between the project site and I-580 and 10 percent of the project traffic would utilize Manning Road. The closest NSLU to the project traffic affected road segments centerlines would be 30 feet from North Livermore Avenue (approximately 1,600 feet south of the project site), and 35 feet from Manning Road (approximately 160 feet north of the project site). The predicted traffic noise level for the project affected road segments is shown in Table 7, Operational Traffic Noise.

Table 7 **OPERATIONAL TRAFFIC NOISE**

	Distance to Nearest NSLU	NSLU	dBA L _{DN} at Nearest NSLU ²						
Roadway Segment	(feet) ¹	Туре	Existing	2011 + Project	Change in L _{DN}				
North Livermore Avenue									
Project Site to westbound I-580	30	SF	69.8	69.9	+0.1				
Manning Road									
Project Site to Morgan Territory Road	35	SF	65.9	65.9	+0.0				
Source: TNM 2.5	<u>.</u>								

Source: INM 2.5

I-580 = Interstate 580; MF = SF = Single-Family Residential.

¹ Distance measured from roadway centerline.

² Noise level assuming all traffic at the posted speed limit of 50 miles per hour.

As shown in Table 7, existing noise levels at all roadway segments at the closest NSLUs already exceed 60 LDN without the project. With the project traffic included, the maximum increase in noise levels would be 0.1 dBA L_{DN} and would not exceed 3 dBA L_{DN} along any roadway segment. Therefore, project operational traffic noise would not result in the generation of a substantial permanent increase in ambient noise levels in the vicinity of the project and the impact would be less than significant.

4.2 **ISSUE 2: EXCESSIVE VIBRATION**

4.2.1 **Construction Vibration**

During construction, the largest potential source of vibration during project construction would be an impact pile driver used to install PV panel rack support piers. The largest impact pile drivers could result in vibrations as high as 1.518 inches per second PPV at a distance of 25 feet (FTA 2018). The closest vibration sensitive land use to potential pile driving activity would be approximately 125 feet from the nearest PV panel location (a residence west of the project site, north of Manning Road). A 1.518 inches per second PPV vibration level would equal approximately 0.14 inches per second PPV at a distance of 125 feet.¹ This would be lower than the 0.2-inches per second PPV FTA threshold for non-engineered wood and masonry structures. The Cultural Resources report for the project identified two structures, a barn and a shed on the Stanley Ranch south of the Cayetano substation, eligible for list as historical buildings (HELIX 2020). Potential pile driving activity could occur approximately 190 feet north of the eligible shed, A 0.644 inches per second PPV vibration level would equal approximately 0.07 inches per

¹ Equipment PPV = Reference PPV * (25/D)ⁿ (in/sec), where Reference PPV is PPV at 25 feet, D is distance from equipment to the receiver in feet, and n = 1.5 (the value related to the attenuation rate through typical soil); formula from FTA 2018.

second PPV at a distance of 190 feet. This would be lower than the 0.12-inches per second PPV FTA threshold for buildings extremely susceptible to vibration damage.

Another potential source of vibration during project construction activities would be a vibratory roller, which may be used as close at 75 feet of the nearest off-site residence (a residence west of the project site, north of Manning Road). A vibratory roller could create vibrations as high as 0.210 inches per second PPV at a distance of 25 feet (FTA 2018). A 0.210 inches per second PPV vibration level would equal approximately 0.04 inches per second PPV at a distance of 75 feet.¹ This would be lower than the 0.2 inches per second PPV FTA threshold for risk of architectural damage to non-engineered wood and masonry structures.

Therefore, although vibrations from pile driving and vibratory rollers may be perceptible to nearby receptors, temporary groundborne vibration impacts associated with project construction would be less than significant.

4.2.2 Operational Vibration

Long-term operation of the project would require the use of equipment and vehicles for periodic equipment maintenance, PV panel washing, and vegetation management. The largest potential source of vibration from off-road equipment used during project operation activities would be a loaded water truck, which could be used within 75 feet of the nearest off-site residence. A loaded heavy truck operating off-road could create vibrations as high as 0.076 inches per second PPV at a distance of 25 feet (FTA 2018). A 0.076 inches per second PPV vibration level would equal approximately 0.01 inches per second PPV at a distance of 75 feet.¹ This would be substantially lower than the 0.2 inches per second PPV FTA threshold for risk of architectural damage non-engineered wood and masonry structures. Therefore, groundborne vibration impacts associated with project operational use of water trucks or other off-road equipment would be less than significant.

4.3 ISSUE 3: AIRPORT NOISE EXPOSURE

The closest airport or airstrip to the project site is the Livermore Executive Airport, approximately 3.2 miles southwest. The project is not within the Livermore Executive Airport influence area or within any of the designated airport noise compatibility zones (Alameda County 2012). Therefore, the project would not expose people residing or working in the project area to excessive noise levels from airport operations and the impact would be less than significant.

4.4 ISSUE 4: CUMULATIVE NOISE IMPACTS

The project, in combination with past present and reasonably foreseeable project could result in cumulative noise impacts. For cumulative noise issues, the only identified cumulative projects would be the proposed Livermore Community Solar Farm project, located across North Livermore Avenue from the project site, and the proposed Oasis Fund Livermore Grow Facility, located adjacent to the northern section of the project site on Morgan Territory Road.

4.4.1 Cumulative Construction Noise

Noise from construction activities at the Livermore Community Solar Farm and Oasis Fund Livermore Grow Facility projects could overlap with project construction activities. As discussed above, noise from

construction equipment that occurs between the hours of 7:00 a.m. and 7:00 p. between 7:00 a.m. to 7:00 p.m., Monday through Friday, or between 8:00 a.m. to 5:00 p.m. on Saturdays would be exempt from the County Noise Ordinance exterior noise level standard. These restrictions would apply to construction of all the cumulative projects. Mitigation measure NOI-1 requires the proposed project's noise generating construction activities to be limited to those hours or be subject to the specified exterior noise limits. Therefore, noise from project off-road construction equipment would result in a less than cumulatively considerable impact with mitigation incorporated.

According to the Livermore Community Solar Farm Project Draft Environmental Impact Report, the maximum peak hour construction traffic on North Livermore Avenue would be 25 worker vehicles and 2 trucks (Placeworks 2020). According to the Initial Study/Mitigated Negative Declaration air quality analysis for the proposed Oasis Fund Livermore Grow Facility, the maximum peak hour construction traffic on North Livermore Avenue would be 23 worker trips and 1 truck trip (Raney 2019). The noise level resulting from the existing traffic plus the maximum potential combined construction traffic for the two cumulative projects and the proposed project was modeled using the TNM, as described in Section 3.1. The results of the cumulative construction traffic noise modeling are shown in Table 8, *Cumulative Construction Traffic Noise*.

Table 8
CUMULATIVE CONSTRUCTION TRAFFIC NOISE

	Distance to Nearest NSLU	NSLU	dBA L _{DN} at Nearest NSLU ²				
Roadway Segment	(feet) ¹	Type	Cumulative	Cumulative	Change in		
	(1881)	Type	cumulative	+ Project	L _{DN}		
North Livermore Avenue							
Project Site to westbound I-580	30	SF	70.2	72.1	+2.1		

Source: TNM 2.5; CHS 2020; Placeworks 2020; Raney 2019

I-580 = Interstate 580; MF = SF = Single-Family Residential.

¹ Distance measured from roadway centerline.

² Noise level assuming all traffic at the posted speed limit of 50 miles per hour.

As shown in Table 8, with the project construction traffic included, the maximum increase in cumulative noise levels be 2.1 dBA LDN and would not exceed 3 dBA LDN. In addition, project construction traffic would be temporary and would cease once the project is operational. Therefore, the noise from project construction traffic would result in a less than cumulatively considerable impact.

4.4.2 Cumulative Operational Noise

Noise from the electrical equipment (e.g., transformers, inverters) from the project, the Livermore Community Solar Farm project, and the existing PG&E Cayetano substation could contribute cumulatively to ambient noise levels in the project vicinity. However, each electrical equipment noise source would be required to meet the County Noise Ordinance exterior noise level standard of 60 dBA L_{EQ} for transformers and associated substation electrical equipment. The proposed project substation transformer would be located at least 500 feet from the existing Cayetano substation transformer and at least 800 feet from the proposed Livermore Community Solar Farm project transformers and inverters. With adherence to the County Noise Ordinance exterior noise standards, in combination with the anticipated distances between the proposed and existing electrical equipment, the contribution of operational noise from the project's electrical equipment to the existing noise environment would not be cumulatively

As discussed in Section 3.2, the project would generate 12 peak hour operational vehicle trips (11 on North Livermore Avenue). The proposed Livermore Community Solar Farm project is anticipated to generate a maximum of 10 daily peak hour operational trips (Placeworks 2020), and the Oasis Fund Livermore Grow Facility project is anticipated to generate a maximum of 11 peak hour operational trips (Raney 2019). The noise level resulting from the existing traffic plus the maximum potential combined operational traffic for the two cumulative projects and the proposed project was modeled using the TNM, as described in Section 3.1. The results of the cumulative operational traffic noise modeling are shown in Table 9, *Cumulative Operational Traffic Noise*.

Table 9 CUMULATIVE OPERATIONAL TRAFFIC NOISE

	Distance to Nearest NSLU	NSLU	dBA L _{DN} at Nearest NSLU ²			
Roadway Segment	(feet) ¹	Туре	Cumulative	Cumulative + Project	Change in L _{DN}	
North Livermore Avenue						
Project Site to westbound I-580	30	SF	70.0	70.0	+0.0	
Source: TNM 2 5: CHS 2020: Placeworks 202	0. Raney 2019					

I-580 = Interstate 580; MF = SF = Single-Family Residential.

¹ Distance measured from roadway centerline.

² Noise level assuming all traffic at the posted speed limit of 50 miles per hour.

As shown in Table 9, with the project operational traffic included, there would be no discernable increase in cumulative traffic noise levels. Therefore, the operational trips from the proposed project would not generate a perceptible increase in traffic noise in the project vicinity, over the traffic noise levels from existing traffic plus traffic from the Livermore Community Solar Farm project and the Oasis Fund Livermore Grow Facility project. The noise from project operational traffic would result in a less than cumulatively considerable impact.

5.0 LIST OF PREPARERS

Martin Rolph Charles Terry Joanne M. Dramko, AICP Lesley Owning Noise Specialist Principal Acoustician Principal Technical Specialist, QA/QC Project Manager

6.0 **REFERENCES**

Alameda, County of. 2020. Code of Ordinances. Online content updated on July 7, 2020. Available at: https://library.municode.com/ca/alameda_county/codes/code_of_ordinances.

2012. Livermore Executive Airport – Airport Land Use Compatibility Plan. Available at: https://www.acgov.org/cda/planning/generalplans/documents/LVK_ALUCP_082012_FULL.pdf.

2000. East County Area Plan. Available at: <u>https://www.acgov.org/cda/planning/generalplans/documents/EastCountyAreaPlancombined.p</u> <u>df</u>.

- American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE). 2012. ASHRAE Handbook.
- California Department of Transportation (Caltrans). 2013. Technical Noise Supplement (TeNS) to the Traffic Noise Protocol. September. Available at: http://www.dot.ca.gov/hq/env/noise/pub/TeNS_Sept_2013B.pdf.
- CHS Consulting Group (CHS). 2020. Aramis Solar Energy Generation and Storage Project Transportation Impact Study. April.
- Federal Transit Administration (FTA). 2018. Transit Noise and Vibration Impact Assessment. Available at: <u>https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf.</u>
- HELIX Environmental Planning (HELIX). 2020. Aramis Solar Energy Generation and Storage Project Cultural Resources Assessment Report. September.
- National Electrical Manufacturers Association (NEMA). 2000. NEMA Standards Publication No. TR 1-1993 (R2000), Transformers, Regulators and Reactors.
- Placeworks. 2020. Livermore Community Solar Farm Draft EIR, State Clearinghouse Number: 2018092012. March.
- Raney Planning & Management, Inc. 2019. Oasis Fund Livermore Grow Facility Initial Study/Mitigated Negative Declaration. PLN2019-00258. December.
- U.S. Department of Transportation (USDOT). 2008. Roadway Construction Noise Model. Available at: <u>https://www.fhwa.dot.gov/Environment/noise/construction_noise/rcnm/index.cfm</u>.

2004. Traffic Noise Model Version 2.5. Available at: https://www.fhwa.dot.gov/environment/noise/traffic_noise_model/tnm_v25/.

Appendix A

Construction Noise Modeling Outputs

This page intentionally left blank

Name	ID	Туре		Oktave Spectrum (dB)									Source		
			Weight.	31.5	63	125	250	500	1000	2000	4000	8000	Α	lin	
Inverter 1	11	Lw (c)							81.1				81.1	81.1	
Transformer 1	T1	Lw							69.0				69.0	69.0	
Transformer 2	T2	Lw							87.0				87.0	87.0	
Fan1	Fan1	Lw			91.0	87.0	83.0	78.0	77.0	71.0	66.0	61.0	81.6	93.2	
AC1	AC1	Lw				90.0	86.3	83.6	82.9	80.3	74.9	71.4	87.6	93.0	
Name	Μ.	ID	Leve	el Lr	Limit.	Value	Land Use		Land Use Height Coordinates		se Height Coordinates				
------	----	-----	-------	-------	--------	-------	----------	------	-----------------------------	--------	-----------------------	------------	------		
			Day	Night	Day	Night	Туре	Auto	Noise Type		Х	Y	Z		
			(dBA)	(dBA)	(dBA)	(dBA)				(m)	(m)	(m)	(m)		
R1		R1	43.4	43.4	0.0	0.0		x	Total	1.52 r	608401.78	4177083.95	1.52		
R2		R2	48.3	48.3	0.0	0.0		x	Total	1.52 r	608243.24	4177273.29	1.52		
R3		R3	55.3	55.3	0.0	0.0		x	Total	1.52 r	608396.86	4177572.08	1.52		
R4		R4	39.9	39.9	0.0	0.0		x	Total	1.52 r	608390.83	4178385.21	1.52		
R5		R5	30.1	30.1	0.0	0.0		x	Total	1.52 r	608370.99	4179256.78	1.52		
R6		R6	30.9	30.9	0.0	0.0		x	Total	1.52 r	608118.52	4179151.07	1.52		
R7		R7	29.6	29.6	0.0	0.0		x	Total	1.52 r	608115.84	4179294.60	1.52		
R8		R8	31.4	31.4	0.0	0.0		x	Total	1.52 r	607955.39	4179069.62	1.52		
R9		R9	30.7	30.7	0.0	0.0		x	Total	1.52 r	607688.81	4179058.96	1.52		
R10		R10	28.1	28.1	0.0	0.0		x	Total	1.52 r	607680.48	4176862.65	1.52		

CadnaA Inverter and Energy Storage Noise Output

Name	М.	ID	Leve	el Lr	Limit.	Value	Land Use		Land Use Height Coordinates		oordinates		
			Day	Night	Day	Night	Туре	Auto	Noise Type		Х	Y	Z
			(dBA)	(dBA)	(dBA)	(dBA)				(m)	(m)	(m)	(m)
R1		R1	40.4	34.8	0.0	0.0		х	Total	1.52 r	608401.78	4177083.95	1.52
R2		R2	43.9	42.3	0.0	0.0		х	Total	1.52 r	608243.24	4177273.29	1.52
R3		R3	42.0	39.7	0.0	0.0		х	Total	1.52 r	608396.86	4177572.08	1.52
R4		R4	43.4	26.1	0.0	0.0		х	Total	1.52 r	608390.83	4178385.21	1.52
R5		R5	43.7	19.0	0.0	0.0		х	Total	1.52 r	608370.99	4179256.78	1.52
R6		R6	42.4	18.8	0.0	0.0		х	Total	1.52 r	608118.52	4179151.07	1.52
R7		R7	41.2	17.9	0.0	0.0		х	Total	1.52 r	608115.84	4179294.60	1.52
R8		R8	40.9	20.0	0.0	0.0		х	Total	1.52 r	607955.39	4179069.62	1.52
R9		R9	39.5	19.6	0.0	0.0		х	Total	1.52 r	607688.81	4179058.96	1.52
R10		R10	41.4	29.9	0.0	0.0		х	Total	1.52 r	607680.48	4176862.65	1.52

This page intentionally left blank

Appendix B

Equipment Manufacturer Data Sheets This page intentionally left blank

TMEIC Corporation Office: 1325 Electric Rd, Roanoke, VA 24018 USA Mailing Address: 2060 Cook Drive, Salem, VA 24153

Example Technical Specification

Universal Power Conditioner System PV / ESS Inverter

(Preliminary - Under Development)

TMEIC

Table of Contents

1.	1. PURPOSE, STANDARDS, AND SCOPE						
	1.1. Statement of Purpose	3					
	1.2. General Scope	3					
	1.3. Documentation	3					
	1.4. Packaging, Transportation and Storage	3					
	1.5. Product Testing	3					
	1.6. Maintenance Contract	3					
	1.7. Commissioning	4					
	1.8. Dispatch of TMEIC Engineers	4					
	1.9. Rules & Standards	5					
	1.10. Dimensional Units	5					
	1.11. Site Conditions	6					
2.	DETAILS OF EQUIPMENT SUPPLIED [Base Bid]	7					
	2.1. PCS Circuit and Common Features	7					
	2.2. PV-PCS	16					
	2.3 ESS-PCS	18					
	2.4 System Line Up and Configuration	20					
	2.5 System Line Up with Hybrid System of PV and ESS	24					
3.	BILL OF MATERIAL (Per PCS)	. 25					
	3.1. A. Inverter	25					
	3.1. B. Integration	25					
	3.1. C. MV 3-Phase Transformer for 5 x 840kW/840kVA Inverter Lineup	26					
	3.1. D. Factory Tests	27					
	3.1. E. Power Plant Controller (Option)	28					
	3.1. F. Structural Outline *Preliminary						

1. PURPOSE, STANDARDS, AND SCOPE

1.1. Statement of Purpose

TMEIC will provide broad-based customer support including post sales application support and commissioning services. The equipment described in the specification below is intended to be used as a Grid-Connected Photovoltaic Inverter System for a photovoltaic generation power plant.

1.2. General Scope

This specification will cover the design, fabrication, commissioning, and supply of the following equipment:

Equipment	Description
Inverter Unit	4200kW/4200kVA (5x 840kW units, maximum output at 25°C)
MV/LV 3-phase Transformer (MV TR) - Liquid-Filled MTR Pad mounted	3360/4200kVA, 630V - 34.5kV
PV Skid	Outdoor type

1.3. Documentation

All submittals will be in electronic form and will include:

- Final Specification
- Test Reports
- Instruction Manual
- Installation Manual
- Schematic Diagrams
- Outline Drawing

1.4. Packaging, Transportation and Storage

The equipment may be divided into several sections for protection during transportation when necessary. The equipment will be properly packaged for the respective mode of transportation. Customer is responsible for disposal of packaging materials. Special notations such as "Fragile", "This side Up", "Center of Gravity, "Weight", etc.. when necessary, will be clearly labeled on each package. Manufacturer's recommendations for storage should be followed upon receipt.

1.5. Product Testing

Testing will be carried out at the manufacturer's facility for each piece of equipment. Test reports of major equipment will be submitted.

1.6. Maintenance Contract

Performing scheduled inspections and maintenance will improve the reliability of the equipment and prolong its service life. It is recommended that periodical inspections and maintenance be performed by specialists of the service representative. Such maintenance is not included in this scope and can be quoted separately. The warranty is dependent upon performing periodical inspections and maintenance as per the manufacturer's manual.

1.7. Commissioning

The equipment presented in this specification will require authorized startup & commissioning services by TMEIC.

The commissioning scope includes but is not limited to the following:

- De-energized checks including proper installation of equipment, torque mark verification, and proper electrical connections between major equipment.
- Energized checks including software updates, verification of set-points and IP addresses, and proper operation of communications and equipment.
- Commissioning tests will be performed per TMEIC Commissioning Checklist

Note: Testing of grid protection relay is not included. Post-shipping tests of the MV Transformer, such as NETA tests, are not included and can be quoted separately.

The commissioning scope and price are based on the following conditions:

- The pre-commissioning checklist must be filled out and returned to the TMEIC project manager at least two weeks before resources will be scheduled to mobilize to site.
- DC voltage and polarity from array inputs inside the DC recombiner box have been verified and documented by others.
- Back feed is available upon arrival of TMEIC technicians.
- De-energized and energized checks will be completed during the same trip.
- Inverters will be available for commissioning continuously.
- Conditions outside of the TMEIC technician's control which result in delay may be subject to extra charge. Conditions could include, but not limited to: Waiting time for grid connection, bad weather to clear out, other related equipment required for PV inverter commissioning to be installed.
- Technicians will not travel with commissioning spares; critical spares will be available either via client stock on hand, or via TMEIC customer support process.
- Brief operations and maintenance overview can be provided immediately following the conclusion of commissioning to available onsite personnel. This is not a formal O&M training class. TMEIC offers regularly scheduled formal classroom and hands-on training. Schedule, curriculum, and pricing can be found at https://www.tmeic.com/customer-support/commissioning-training-field-service.

Any deviation from these conditions will result in extra charges in accordance with TMEIC's published rate sheet during the time that the work is completed. See TMEIC Terms and Conditions for additional information.

Added Services Technical advisory services for supervision of equipment installation and post commissioning services can be quoted but are not within the scope of TMEIC commissioning services.

1.8. Dispatch of TMEIC Engineers

Except for the purpose of implementing the repair under the warranty set forth in 3.3.5, the dispatch of TMEIC engineers for any service whatsoever will be made under a separate agreement offering the buyer to pay additional fees for services.

1.9. Rules & Standards

IEEE 1547	IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.
UL1741-SA	Inverter, Converter, Controllers and Interconnection System Equipment for Power Systems.
NEC 2017 / NFPA 70	National Electric Code 2017
IEEE 1547.1	IEEE Standard Conformance Test Procedures for Equipment Interconnecting Distributed Resources with Electric Power Systems.
IEC 62109-1	Safety of power conversion equipment for use in photovoltaic power systems-Part 1: General Requirements
IEC 62109-2	Safety of power converters for use in photovoltaic power systems – Part 2: particular requirements for inverters
IEC 62933-5-1:2017	Electrical energy storage (EES) systems - Part 5-1: Safety considerations for grid-integrated EES systems - General specification
IEC 61000-6-2	Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments
IEC 61000-6-4	Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments
IEC 61727	Photovoltaic (PV) systems - Characteristics of the utility interface
IEC 62116	Utility-interconnected photovoltaic inverters - Test procedure of islanding prevention measures
BDEW TR3, TR4	

1.10. Dimensional Units

All bolts, nuts and screws will conform to the Metric Thread of ISO (International Organization for Standardization. All manufacturing and design of the equipment will conform to the metric system standards.

1.11. Site Conditions

Grounding System

The inverter must be negatively grounded providing a grounding resistance of less than 5 ohms.

Installation and Operation Environment

When installing or operating the inverter and related devices, ensure that the installation and operation environment complies with Table 1. Failing to observe these standards may result in deterioration of the insulation, causing short life and malfunctions. Before installation, measure and evaluate the environment of the installing location. The inverter must be protected from marine environments and must be sealed from corrosive gas and salty air in accordance with Table1. The warranty is dependent upon meeting the environmental conditions.

Table 1. Inverter installation and operation environment guidelines	Table 1.	Inverter	installation	and o	peration	environment	guidelines
---	----------	----------	--------------	-------	----------	-------------	------------

No.	Item	Environment Standard
1	Installation location	Outdoors
2	Full power ambient temperature range	-25 ~ 25DegC
	Operational Ambient temperature	-25 ~ 60DegC (10% power reduction from 25-50C, 100% power reduction from 50-60C)
3	Relative humidity	The relative humidity must be held between 5 and 95%. There must be no condensation due to temperature change.
4	Altitude	Up to 2000 meters above sea level.
5	Air pressure	The air pressure must be maintained in the range 860 to 1060 hPa. (pending)
6	Vibration and mechanical shock (pending)	Vibrations in the installation environment must have frequencies lower than 10 Hz, or higher than 20 Hz. For vibrations less than 10 Hz, the resulting acceleration must not exceed 0.5G. For vibrations between 20 Hz and 50Hz, the resulting acceleration must not exceed 0.5G. For vibrations between 50Hz and 100Hz, the total amplitude must not exceed 0.1 mm.
7	Dust	Dust in the air where the inverter is installed must not exceed normal atmospheric dust levels. In particular, that dust must not include electrically conductive particles, oils or fats, or organic materials such as silicone.
8	Flammability	There should be no flammable or explosive gas present.
9	Corrosive factors	Inverter should be installed in an environment rated less than C4 corrosive factor for Steel, Zinc, and Copper as defined by ISO 9266.

2. DETAILS OF EQUIPMENT SUPPLIED [Base Bid]

2.1. PCS Circuit and Common Features

Figure 2.1: Circuit diagram of 4 PCS coupled

Benefits and Features:

- 1. Stackable Power Blocks: 800kW-4600kW
- 2. Modular Design
- 3. Each UPCS (PV or ESS) has independent:
 - a. Operation, Control System, Cooling System
 - b. Isolation on DC (Load Break Switch) and AC (MCCB and Contactor)
 - c. DC inputs (PV 8 inputs per block, ESS 1 input per block)
 - d. Individual MPPT tracking
- 4. For PV-PCS, Negative Grounding with CTs on each input.
- 5. For ESS-PCS, the system shall also include the Pre-Charge Circuit, which is connected to the DC battery side.

840kW Inverter Unit

Main Circuit Type

Conversion method	Voltage source inverter with instantaneous current control
Switching method	Pulse Width Modulation (PWM) control
Inverter configuration	Three-phase bridge
Isolation method	External Transformer is required to isolate inverter
Cooling method	Forced Air cooling

Grid Connection Features

(1) Anti-islanding protection

The objective of this system feature is to detect the islanding condition and drive the system to a stable operating condition.

(2) Reactive Power Control

Reactive power can be injected to the grid according to the grid voltage through the TMEIC Power Plant Controller. The TMEIC Power Plant Controller will communicate with each inverter via a communication port, in a Modbus protocol.

(3) Active Power Limit

Site wide active power can be controlled via TMEIC's Power Plant Controller.

Patented (Japanese patent number 2796035)

Grid Support Functionality (1741-SA smart features)

(1) Volt-Var

This function operates under reactive power priority, which means that the inverter will derate for active power instead of reactive power when the maximum kVA rating of MVA is reached.

(2) Frequency – Watt

This function will ramp the output power down as frequency increases. Range of adjustability is TBD. Active Power

(3) **Dynamic VAR Compensation**

Inverter capable of injecting reactive current during low voltage ride through events. Capability shall be in line with limits set forth in BDEW TR3, TR4.

Normal and soft-start ramp rate are under the same settings. They cannot be programmed independently.

Temperature Derate Curve

The curves below define the inverter de-rate characteristics at different ambient and grid voltage conditions.

PVU-L0800GR Derating curve

Derating curve of 800kW Inverter(600Vac)

TME⁷C

TMEIC Corporation Office: 1325 Electric Rd, Roanoke, VA 24018 USA Mailing Address: 2060 Cook Drive, Salem, VA 24153

PVU-L0840GR Derating curve

Derating curve of 840kW Inverter(630Vac)

TME⁷C

TMEIC Corporation Office: 1325 Electric Rd, Roanoke, VA 24018 USA Mailing Address: 2060 Cook Drive, Salem, VA 24153

PVU-L0880GR Derating curve

Derating curve of 880kW Inverter(660Vac)

LVRT and FRT Functionality

Fault Ride through Capabilities for Universal PCS with Rule 21 for illustration. The inverter is capable of more than what is shown below.

<u>Voltage</u>

*Inverter will provide Dynamic Var Compensation as per BDEW TR3 and TR4, as well as the elimination of momentary cessation of current.

Range of Adjustability

Remarks:

For voltage settings over 125%, an optional circuit is required for the control power supply.
 The inverter is not set to supply reactive power during the fault above the settings prior to the fault.
 For overvoltage events, there may be an impact on power quality when the DC voltage is close to the minimu:
 Current may be not perfectly sinusoidal for some asymmetrical faults.

Frequency

Range of adjustability

Remarks:

1) Maximum continuous operation is 64Hz for UL1741-SA compliant inverters and 63Hz for other models

Structural Specification

(1) General Constru	ction of Equipment	TBD		
(2) Inverter Cabinet (Height X Width X D		: 1950mm X 1150mm X 1150mm		
(3) Weight		: TBD		
(4) Paint	Outside general surface	: Sand White		
	Inside surface	: Sand White		
	Base	: Sand White		
(5) Input/output	DC input	: Bottom Cable Entry		
interface	AC output	: Output on back/side of the inverter		
	Control Wire	: TBD		
	Grounding Wire	: TBD		

2.2. PV-PCS Control Method for PV-PCS

DC side control functions	Maximum Power Point Tracking (MPPT) control				
Grid side control functions	Active power control, reactive power control, Voltage Control Mode*				
Operation	Auto start/stop (soft-start at startup)				
Other functions	Output power limiter. (If the capacity of solar power exceeds the				
Other functions	generation capacity of the Inverter, the Inverter limits the output power)				

*Voltage Control Mode is available via TMEIC Power Plant Controller integration.

Electrical Ratings of PV-PCS

ltem		Speci	fication			
Rated AC Voltage	600VAC	630VAC	660VAC	690VAC		
Rated Power@25°C	800kW	840kW	880kW	920kW		
Rated Power @50°C	730kW	765kW	800kW	840kW		
MPPT Range	875-1300VDC	915-1300VDC	960-1300VDC	1005–1300VDC		
Rated Frequency	50/60 Hz					
Maximum Efficiency		98	3.5%			
CEC Efficiency		98	3.5%			
Inverter Dimensions (Tentative)	1100 X 1900 X 1100 mm (W X H X D)					
Weight (tentative)	<1000kgs					
Enclosure Rating	NEMA 3R					
Installation	Outdoor					
AC Protection	MCCB and Fuse					
DC Protection	Fuses					
Communication	Modbus TCP					
DC Inputs	Maximum 8 per Inverter Each input rating is a maximum of 400A					
		0A				
Harmonic Distortion of AC Current	\leq 3% THD (At rat	ed power)				
Standard Control Power Supply	Control Power Supply from Inverter output and Capacitor backup					
	circuit (3 sec. compensation)					
Maximum Line Up	Maximum Line up of a total of 6 panels					
Noise Level	75dBA at 1 meter					
Short Circuit Ratio	Above 2.0 (Belo	w 2.0, TMEIC will o	do simulations and	l confirm)		
Short Circuit Withstand Current	AC Side– 65kA DC	Side – 100kA (20m	ıs)			
Cooling Method	Independent Forced Air Cooling with no Air Filters					

* Maximum output power rating is de-rated by input DC voltage, output AC voltage and temperature condition.

** Transition from constant DC voltage mode to MPPT mode occurs 10V before minimum MPPT range for each respective o.

*** Rated output power and power factor variation range is only for rated voltage condition.

Protective Functions

Input (DC) side	Ground Fault, DC Reverse Current, Over Voltage, Over Current	1
Grid (AC) side	Anti-islanding, Over/Under Voltage, Over/Under Frequency, Over current	

Protective Devices

Input (DC) side	Surge protective device: IN=10kA/UCpv=1500V
Grid (AC) side	Surge protective device: IN=15kA/AC690V

Power Factor Control

The D-Curve depicted below shows the Ninja PF characteristics. The inverter offers a power factor range from +/-0.85; the example PQ curve below is shown with derated power at 35C ambient temperature. PF characteristics will be de-rated according to the change of AC voltage, DC voltage, and ambient temperature.

* Operation area will be curtailed by input DC voltage, output AC voltage.

PQ curve for PVU-L0840GR (35°C)

2.3 ESS-PCS

Control Method of ESS-PCS

DC side control functions	DC Voltage will depend on the State of Charge of Battery
Grid side control functions	Active power control, reactive power control, Voltage Control Mode*
Operation	Dependent on the command from an external controller

Electrical Ratings of ESS-PCS

ltem		Specification						
Rated AC Voltage	480VAC	600VAC	630VAC					
Rated Power@25°C	630 kW	800 kW	840 kW					
Rated Power @50°C	570kW	730 kW	765 kW					
MPPT Range	710-1300 VDC	875-1300 VDC	915-1300VDC					
Rated Frequency		50/60 Hz						
Maximum Efficiency		98.5%						
CEC Efficiency		98.5%						
Inverter Dimensions (Tentative)	1100 X 1900 X 1100 mm (W X H X D)							
Weight (tentative)	<1000kgs							
Enclosure Rating		IP 55/ NEMA 3R						
Installation		Outdoor						
AC Protection		MCCB and Fuse						
DC Protection		Fuses						
Communication		Modbus TCP						
DC Inputs		1 per Inverter						
Harmonic Distortion of AC Current	\leq 3% THD (At rated pow	ver)						
Standard Control Power Supply	Control Power Supply fro	om Inverter output and Ca	apacitor backup					
	circuit (3 sec. compensa	tion)						
Maximum Line Up	Maximum Line up of a to	otal of 6 panels						
Noise Level	75dBA at 1 meter							
Short Circuit Ratio	Above 2.0 (Below 2.0, 1	MEIC will do simulations	and confirm)					
Short Circuit Withstand Current	AC Side– 65kA DC Side – 1	L00kA (20ms)						
Cooling Method	Independent Forced air co	ooling with no Air Filters						

* Maximum output power rating is de-rated by input DC voltage, output AC voltage and temperature condition. ** Transition from constant DC voltage mode to MPPT mode occurs 10V before minimum MPPT range for each respective o.

*** Rated output power and power factor variation range is only for rated voltage condition.

Protective Functions

Input (DC) side	Ground Fault, DC Reverse Current, Over Voltage, Over Current
Grid (AC) side	Anti-islanding, Over/Under Voltage, Over/Under Frequency, Over current

Protective Devices

Input (DC) side	Surge protective device: IN=10kA/UCpv=1500V
Grid (AC) side	Surge protective device: IN=15kA/AC690V

Power Factor Control

The D-Curve depicted below shows the 840kW Outdoor ESS-PCS PF characteristics. The inverter offers a power factor range from +/-0.8 at full rated power with 1pu grid voltage, nominal DC voltage and 25C ambient temperature. PF characterisitics will be de-rated according to the change of AC voltage, DC voltage, and ambient temperature.

2.4 System Line Up and Configuration

The Universal PCS can operate as an ESS-PCS, a PV-PCS and a hybrid that consists of PV-PCS and ESS-PCS on a common low Voltage AC same bus. When the system is a PV-PCS only or an ESS-PCS only, units are placed in parallel to form an Inverter System of consisting of the following rating:

Panel Rating	AC Voltage	1 PCS	2PCS	3PCS	4PCS	5PCS	6 PCS
920kW	690VAC	920 kW	1840 kW	2760 kW	3680 kW	4600 kW	5520 kW
880kW	660VAC	880 kW	1760 kW	2640 kW	3520 kW	4400 kW	5280 kW
840kW	630VAC	840 kW	1680 kW	2520 kW	3360 kW	4200 kW	5040 kW
800kW	600VAC	800 kW	1600 kW	2400 kW	3200 kW	4000 kW	4800 kW

Table 2.4.1: PV Only @25°C

Table 2.4.2: PV Only @35°C

Panel Rating	AC Voltage	1 PCS	2PCS	3PCS	4PCS	5PCS	6 PCS
920kW	690VAC	888 kW	1776 kW	2664 kW	3552 kW	4440 kW	5328 kW
880kW	660VAC	848 kW	1696 kW	2544 kW	3392 kW	4240 kW	5088 kW
840kW	630VAC	810 kW	1620 kW	2430 kW	3240 kW	4050 kW	4860 kW
800kW	600VAC	772 kW	1544 kW	2316 kW	3088 kW	3860 kW	4632 kW

Table 2.4.3: PV Only @40°C

Panel Rating	AC Voltage	1 PCS	2PCS	3PCS	4PCS	5PCS	6 PCS
920kW	690VAC	872 kW	1744 kW	2616 kW	3488 kW	4360 kW	5232 kW
880kW	660VAC	832 kW	1664 kW	2496 kW	3328 kW	4160 kW	4992 kW
840kW	630VAC	795 kW	1590 kW	2385 kW	3180 kW	3975 kW	4770 kW
800kW	600VAC	758 kW	1516 kW	2274 kW	3032 kW	3790 kW	4548 kW

Table 2.4.4: PV Only @50°C

Panel Rating	AC Voltage	1 PCS	2PCS	3PCS	4PCS	5PCS	6 PCS
920kW	690VAC	840 kW	1680 kW	2520 kW	3360 kW	4200 kW	5040 kW
880kW	660VAC	800 kW	1600 kW	2400 kW	3200 kW	4000 kW	4800 kW
840kW	630VAC	765 kW	1530 kW	2295 kW	3060 kW	3825 kW	4590 kW
800kW	600VAC	730 kW	1460 kW	2190 kW	2920 kW	3650 kW	4380 kW

Table 2.4.5: ESS Only @25°C

Panel Ration	AC Voltage	1 PCS	2PCS	3PCS	4PCS	5PCS	6 PCS
840kW	630VAC	840 kW	1680 kW	2520 kW	3360 kW	4200 kW	5040 kW
800kW	600VAC	800 kW	1600 kW	2400 kW	3200 kW	4000 kW	4800 kW
630kW	480VAC	630 kW	1260 kW	1890 kW	2520 kW	3150 kW	3780 kW

Table 2.4.6: ESS Only @35°C

Panel Ration	AC Voltage	1 PCS	2PCS	3PCS	4PCS	5PCS	6 PCS
840kW	630VAC	810 kW	1620 kW	2430 kW	3240 kW	4050 kW	4860 kW
800kW	600VAC	772 kW	1544 kW	2316 kW	3088 kW	3860 kW	4632 kW
630kW	480VAC	606 kW	1212 kW	1818 kW	2424 kW	3030 kW	3636 kW

Table 2.4.7: ESS Only @40°C

Panel Ration	AC Voltage	1 PCS	2PCS	3PCS	4PCS	5PCS	6 PCS
840kW	630VAC	795 kW	1590 kW	2385 kW	3180 kW	3975 kW	4770 kW
800kW	600VAC	758 kW	1516 kW	2274 kW	3032 kW	3790 kW	4548 kW
630kW	480VAC	594 kW	1188 kW	1782 kW	2376 kW	2970 kW	3564 kW

Table 2.4.8: ESS Only @50°C

Panel Ration	AC Voltage	1 PCS	2PCS	3PCS	4PCS	5PCS	6 PCS
840kW	630VAC	765 kW	1530 kW	2295 kW	3060 kW	3825 kW	4590 kW
800kW	600VAC	730 kW	1460 kW	2190 kW	2920 kW	3650 kW	4380 kW
630kW	480VAC	570 kW	1140 kW	1710 kW	2280 kW	2850 kW	3420 kW

2.5 System Line Up with Hybrid System of PV and ESS

In a hybrid system, the Line UP consists of both the PV-PCS and the ESS-PCS in the same system. In such a system, typically TMEIC proposes to have one ESS system per line up. In this case the system shall consist of five Inverters and one Energy storage Inverter. The transformer is rated as per the PV inverters only. The system reduces the overall losses and improves the roundtrip efficiency of the system.

Figure 2.5.2 Comparisons of DC Coupling/Conventional AC Coupling/Universal PCS AC Coupling

The step up transformer rating depends on the requirement of the system and application. The limitation of the step up transformer is based on 5 PCS Units/ transformer; however with adequate control to ensure that excess power from the PV is stored in the ESS the line can be increased.

3. BILL OF MATERIAL (Per PCS)

3.1. A. Inverter

5 x 840kW/840kVA Universal PCS inverter units will be installed, per skid.

3.1. B. Integration

Generic System configuration is shown in Figure 1. The equipment described below will be installed on the

Engineering	Package integration engineering for 4.2MW Skid.			
Control Circuit and Communication	Control circuit and communication wiring for TMEIC supplied			
Wiring	equipment are included.			
Auxiliary Power	No Auxiliary Equipment is included in this quote.			
	Example configurations: 10kVA 3-phase transformer with 208/120V panelboard and 7			
	breakers			
	40kVA 3-phase transformer with 480V and 208/120V			
	panelboards, 7 breakers each			
Canopy Shade Structure	Not included			
Canopy Shade Structure Customer Furnished Equipment (CFE)	SCADA, DAS and site data controller should be provided by			
	SCADA, DAS and site data controller should be provided by others. Wiring and Installation of customer supplied equipment is			
	SCADA, DAS and site data controller should be provided by others. Wiring and Installation of customer supplied equipment is not included in the base price. Optional pricing can be provided			
	SCADA, DAS and site data controller should be provided by others. Wiring and Installation of customer supplied equipment is not included in the base price. Optional pricing can be provided with additional information on CFE equipment. FO cables and			
Customer Furnished Equipment (CFE)	SCADA, DAS and site data controller should be provided by others. Wiring and Installation of customer supplied equipment is not included in the base price. Optional pricing can be provided with additional information on CFE equipment. FO cables and tracker motor wiring are also not included.			
	SCADA, DAS and site data controller should be provided by others. Wiring and Installation of customer supplied equipment is not included in the base price. Optional pricing can be provided with additional information on CFE equipment. FO cables and tracker motor wiring are also not included. If the skid(s) are to be mounted on piers requiring stairs and			
Customer Furnished Equipment (CFE)	SCADA, DAS and site data controller should be provided by others. Wiring and Installation of customer supplied equipment is not included in the base price. Optional pricing can be provided with additional information on CFE equipment. FO cables and tracker motor wiring are also not included. If the skid(s) are to be mounted on piers requiring stairs and safety railings, the stairs and safety railings are not part of this			
Customer Furnished Equipment (CFE) Stairs and Safety Railings	 SCADA, DAS and site data controller should be provided by others. Wiring and Installation of customer supplied equipment is not included in the base price. Optional pricing can be provided with additional information on CFE equipment. FO cables and tracker motor wiring are also not included. If the skid(s) are to be mounted on piers requiring stairs and safety railings, the stairs and safety railings are not part of this quote and will be supplied by others. 			
Customer Furnished Equipment (CFE) Stairs and Safety Railings Stamped Drawings	 SCADA, DAS and site data controller should be provided by others. Wiring and Installation of customer supplied equipment is not included in the base price. Optional pricing can be provided with additional information on CFE equipment. FO cables and tracker motor wiring are also not included. If the skid(s) are to be mounted on piers requiring stairs and safety railings, the stairs and safety railings are not part of this quote and will be supplied by others. PE stamped drawings may be included, if required. 			
Customer Furnished Equipment (CFE) Stairs and Safety Railings	 SCADA, DAS and site data controller should be provided by others. Wiring and Installation of customer supplied equipment is not included in the base price. Optional pricing can be provided with additional information on CFE equipment. FO cables and tracker motor wiring are also not included. If the skid(s) are to be mounted on piers requiring stairs and safety railings, the stairs and safety railings are not part of this quote and will be supplied by others. 			

Note: The skid dimensions are approximately 29'L x 4'W. Customer is to provide other means for additional maintenance space if required to meet any code or county specific requirements.

3.1. C. MV 3-Phase Transformer for 5 x 840kW/840kVA Inverter Lineup

Item	Specifications (customized for project)			
kVA	3360kVA / 4200kVA			
Special Application	Two-Winding			
Temperature Rise	65 degree rise at 30C ambient, 40C maximum ambient temperature			
Cooling Class	ONAF (actively cooled) (ONAN / KNAN / KNAF also available)			
Frequency	60 Hz			
Duty Cycle	Designed for step-up operation			
Insulating fluid	Mineral Oil (biodegradable fluids available)			
Elevation	Designed for operation at 1000 m (3300 ft.) above sea level			
Sound Level	NEMA TR1 Standard			
High Voltage	34500 Delta Volts, 150 kV BIL (available in other voltages/configurations)			
Electrostatic Shield	Electrostatic Shield between Primary & Secondary Windings. Ground Shield Bushing			
kV Class	35 kV			
High Voltage Configuration	Dead Front, Loop Feed			
High Voltage Bushings	600 amp Cooper dead break one-piece bushings (Qty: 6)			
Neutral Bushings	250 amp 2 hole spade bushing			
Load-break Switching	15-38 kV, 2 Position switch			
Switch Cover	Padlock cover over Switch (Outside of Cabinet)			
Overcurrent Protection	Internal Cartridge in Series with Parallel oil-immersed partial range current limiting fuse x 6			
Expulsion Fuses	Internal Expulsion (ABB pro-link) x 3			
Low Voltage	630 Ungrounded Wye Volts, 30 kV BIL (available in other configurations)			
kV Class (LV)	1.2 kV			
Low Voltage Bushings	Integral aluminum 8-hole spade bushings (Qty: 3)			
Bushing Supports	Standard LV Bushing Support Assembly			
Cabinet hardware	Penta-head cabinet door bolts			
Coatings	Touch-up paint (Qty: 2)			
Taps	2 - 2.5% taps above and 2 - 2.5% taps below nominal			
Certifications	UL Listed (UL logo on nameplate), ANSI C57			
Notifications	Shock and Arc Flash Warning Decal			
Gauges & Fittings	Liquid level gauge with Alarm Contact, Thermometer, dial-type with Alarm Contact, Pressure/vacuum gauge with Alarm Contact, Schrader valve, Pressure relief device, 50 SCFM, Drain valve with sampler (1") located outside of cabinet, with cover Oil Fill Plug			
Tank accessories	IEEE standard two-hole ground pads (Qty: 3), Nitrogen Blanket			
Special Feature	Load break switch located outside cabinet on HV side padlocked door, Padlock cover over drain valve			

3.1. D. Factory Tests

The following standard factory tests will be performed on the MV Transformer according to ANSI C57.12.90 including:

- Ratio, Polarity and Phase Rotation Test
- Resistance Test
- Routine Impulse Test
- Applied Potential Test
- Induced Potential Test
- Loss Test
- Leak Test
- Nameplate verifications, alarm, trip setting verifications
- Physical and Mechanical inspections
- Demag Test
- No-Load Loss and Excitation Current

Transformer is pressurized at manufacturer's facility and may vary depending on site location and conditions; customer is responsible for maintaining transformer pressure per manufacturer's recommendations.

3.1. E. Power Plant Controller (Option)

Hardware

1 - RTAC SEL-3355-4 Real Time Automation Controller

Communications					
Ethernet Ports	2 rear; 10 or 100/Mbps, RJ-45				
USB Ports	2 front, 4 rear				
Encrypted Communications	RDP				
Protocols	DNP3, Modbus TCP/IP				

Physical					
Dimensions	19"" (W) x 5.22"" (H) x 11.49"" (D)				
Dimensions	482.6mm (W) x 132.6mm (H) x 291.8mm (D)				
Weight	20 lbs. (9.072kg)				
Enclosure	Treated for chemically harsh / humid environments				
Power Supply	125/250 VDC or 120/240 VAC, 160W HV power supply				
Operating Temperature	-40C to +75C				
Maximum Altitude	2000m				

Power Plant Controller Function

One Power Plant Controller communicates over an Ethernet network to control multiple power converters for a single site.

1) Sequential Start-up/Shut-down

- Based on a command from the HMI, the Power Plant Controller issues a single command to start and stop all inverters.
- 2) Power Factor Control
 - Using power generation feedback from the inverter network, the Power Plant Controller will calculate a reactive current reference for each power converter such that the total power factor does not change with load.
- 3) Output Limitation Control
 - Using power generation feedback from the inverter network, the Power Plant Controller will calculate a power limit for each inverter such that the power output of the entire site does not exceed a preset value.
- 4) Power slew rate control
 - Based on an adjustable power slew rate the Power Plant Controller controls the rate at which power output from the system changes.

5) Live Trending

- Capable of monitoring inverter signals such as input current, total power output, power factor etc.
- 6) Data Historian
 - Record of all site signals that are processed by the Power Plant Controller. One-second poll rate data is kept on an external hard drive for one year before old data is overwritten.
- 7) Dynamic Power Factor Control:
 - Using feedback from a Power Factor meter at the POCC (customer supplied), the Power Plant Controller will adjust the behavior of the inverters to meet a required PF at the measured point.
 - VAR levels will be set and dynamically adjusted to keep the Power Factor (as measured at the PF meter) to a setting within a range.
 - The Ninja inverters can produce VARs to support a power factor range of +/-0.8 at the inverter. The resultant range of Power Factor at the PF meter will depend on the site equipment between the inverters and the PF meter. Refer to D-Curve provided in Temperature Derate Curve section.
 - These ranges can be achieved when the DC bus voltage is greater than 915VDC and the grid voltage is no more than 10% above nominal.
 - Total apparent power (available as real power or VAR) is 4200 kVA at temperatures up to -20 ~ 25DegC, 1 pu, and 915Vdc ~ 1300Vdc condition. Please refer to derate curves provided in Temperature Derate Curve section.

3.1. F. Structural Outline *Preliminary

50PG03–28 Ultra High Efficiency Single Package Electric Cooling with Optional Electric Heat Commercial Rooftop Units with PURON® (R–410A) Refrigerant, Optional EnergyX[™] (Energy Recovery Ventilator)

Product Data

EnergyX model shown

Operation Air Quantity Limits

50PG03-16 Units

UNIT	COOLING (cfm)		HEATING (cfm) ELECTRIC HEAT		
50PG	Min	Мах	Min	Мах	
03	600	1000	600	1000	
04	900	1500	900	1500	
05	1200	2000	1200	2000	
06	1500	2500	1500	2500	
07	1800	3000	1800	3000	
08	2250	3750	2250	3750	
09	2550	4250	2550	4250	
12	3000	5000	3000	5000	
14	3750	6250	3750	6250	
16	4500	7500	4500	7500	

50PG20-28 Units

50PG	COOLING		ELECTRIC HEAT	ELECTRIC HEAT (Vertical)	ELECTRIC HEAT (Horizontal)	
	Minimum Cfm Maximum Cfm			Minimum Cfm	Minimum Cfm	
			High Heat (75 kW)	4,500	5,400	
20	5000	9,000	Medium Heat (50 kW)	3,750	4,800	
			Low Heat (25 kW)	3,750	3,750	
24 55		10,000	High Heat (75 kW)	4,500	5,400	
	5500		Medium Heat (50 kW)	3,750	4,800	
			Low Heat (25 kW)	3,750	3,750	
			High Heat (75 kW)	4,500	5,400	
28	6500	12,000	Medium Heat (50 kW)	3,750	4,800	
			Low Heat (25 kW)	3,750	3,750	

Outdoor Sound Power (Total Unit)

UNIT	A-WEIGHTED*	OCTAVE BAND LEVELS dB							
50PG	(dB)	63	125	250	500	1000	2000	4000	8000
03	75.0	82.6	79.9	75.7	73.3	70.0	64.3	58.4	50.5
04	73.2	79.8	77.2	74.1	70.1	68.0	63.6	58.4	51.9
05	71.9	79.7	79.6	72.6	69.6	66.0	61.4	56.4	48.5
06	78.5	82.2	82.6	79.5	75.7	73.9	68.6	64.0	56.3
07	78.5	87.5	83.0	78.5	76.3	73.8	68.4	63.8	56.5
08	80.0	91.7	83.6	81.0	77.9	75.0	69.9	66.0	59.3
09	79.9	89.1	82.7	80.0	77.7	75.0	70.2	66.3	57.8
12	80.0	90.4	83.1	80.9	77.8	75.2	70.0	66.1	57.6
14	83.3	86.4	85.9	85.3	81.8	78.2	72.2	67.9	59.9
16	84.0	90.3	85.2	83.5	81.1	79.0	73.7	70.5	65.4
20	81.7	90.2	84.8	80.7	79.0	77.6	71.4	66.7	60.7
24	84.9	90.0	86.3	83.6	82.9	80.3	74.9	71.4	66.5
28	84.9	90.0	86.3	83.6	82.9	80.3	74.9	71.4	66.5

LEGEND

 db
 Decibel

 *Sound Rating ARI or Tone Adjusted, A-Weighted Sound Power Level in dB. For sizes 03-12, the sound rating is in accordance with ARI Standard 270-1995.

 For sizes 14-28, the sound rating is in accordance with ARI 370-2001.
Outdoor Sound Power (Total Unit) with High CFM EnergyX

UNIT	A-WEIGHTED*			C	OCTAVE BA	AND LEVEL	S dB		
50PG w/ERV	(dB)	63	125	250	500	1000	2000	4000	8000
03	83.0	82.8	81.4	79.7	78.1	77.9	76.5	72.5	70.1
04	82.7	80.2	79.6	79.1	77.3	77.6	76.5	72.5	70.1
05	82.6	80.1	81.1	78.8	77.2	77.4	76.4	72.4	70.0
06	83.8	82.4	83.4	81.6	79.1	78.8	76.9	72.9 72.9	70.2
07	83.8	87.6	83.8	81.1	79.3	78.8	76.9		70.2
08	87.3	92.0	86.8	84.5	82.4	81.8	80.5	78.0	74.2
09	87.2	89.6	86.4	84.1	82.4	81.8	80.5	78.1	74.2
12	87.3	90.8	86.5	84.5	82.4	81.8	80.5	78.0	74.2
14	88.2	87.2	88.0	87.0	84.2	82.7	80.8	78.2	74.3
16	91.4	93.2	92.8	88.2	86.3	85.5	84.4	83.4	78.4
20	91.2	93.1	92.7	87.4	85.8	85.2	84.2	83.3	78.3
24	91.7	93.0	93.0	88.2	86.9	85.8	84.5	83.5	78.5
28	91.7	93.0	93.0	88.2	86.9	85.8	84.5	83.5	78.5

LEGEND

dB - Decibel

* Sound Rating ARI or tone Adjusted, A-Weighted Sound Power Level in dB. For sizes 03-12, the sound rating is in accordance with ARI Standard 270-1995. For sizes 14-28, the sound rating is in accordance with ARI 370-2001.

PHYSICAL DATA

BASE UNIT 50PG		03	04	05	06	07
NOMINAL CAPACITY (Tons)		2	3	4	5	6
OPERATING WEIGHT (Ib)			3	4	5	U
Unit*		704	704	775	829	874
Economizer		704	704	110	020	014
Vertical		40	40	40	40	40
Horizontal		50	50	50	50	50
Humidi-MiZer [™] Adaptive Dehumidification Syster	n	22	22	31	27	26
Roof Curb						
14-in.		122	122	122	122	122
24-in.		184	184	184	184	184
COMPRESSOR				Fully Hermetic Scroll		
Quantity		1	1	1	1	1
Oil Type			1	Copeland 3MA	1	
Number of Refrigerant Circuits		1	1	1	1	1
Oil (oz)		38	42	42	66	56
REFRIGERANT TYPE				10A (Puron® Refriger		
Expansion Device		TXV	TXV	TXV	TXV	TXV
Operating Charge (Ib) — Standard Unit	Sustam	7.3	9.0	15.7	16.6	19.0
Operating Charge (Ib) — Unit with Humidi-MiZer CONDENSER COIL	System	11.75	13.50	25.00	22.00	22.70
Condenser A (Outer)			Ennanced Co	pper Tubes, Aluminur	n Lanced Fins	1
RowsFins/in.		1 17	1 17	0 17	0 17	0 17
Face Area (sq ft)		117 12.6	117 12.6	217 12.6	217 12.6	217 12.6
Condenser B (Inner)		12.0	12.0	12.0	12.0	12.0
RowsFins/in.		_	117	217	217	217
Face Area (sq ft)		_	12.6	12.6	12.6	12.6
HUMIDI-MIZER COIL		_		pper Tubes, Aluminur		12.0
RowsFins/in.		117	117	117	117	117
Face Area (sq ft)		6.4	6.4	9.3	9.3	9.3
CONDENSER FAN				Propeller		
Quantity…Diameter (in.)		124	124	124	124	124
Nominal Cfm (Total, all fans)		3500	3500	3500	4500	4500
Motor Hp		1/8	1/8	1/8	1/4	1/4
Nominal Rpm — High Speed		825	825	825	1100	1100
Nominal Rpm — Low Speed		300	300	300	300	300
EVAPORATOR COIL		1	Enhanced Copper Tub	es, Aluminum Double	-Wavy Fins, Face Spl	it
Rows…Fins/in.		215	215	215	315	415
Face Area (sq ft)		9.3	9.3	9.3	9.3	9.3
EVAPORATOR FAN				ntrifugal Type, Belt D		
QuantitySize (in.)	Low	112 x 9	112 x 9	112 x 9	112 x 9	112 x 9
Two Deba	High	112 x 9	112 x 9	112 x 9	112 x 9	112 x 9
Type Drive	Low	Belt	Belt	Belt	Belt	Belt
Nominal Cfm	High	Belt	Belt	Belt	Belt	Belt
Maximum Continuous Bhp	Low	800 0.85	1200	1600	2000	2400
Maximum Continuous Bhp	High	0.85	0.85 0.85	0.85 1.60/2.40†	0.85/2.40† 1.60/2.40†	2.40 3.10
Motor Nominal Rpm	i ngii	1620	1620	1620	1725	1725
Motor Frame Size	Low	48Y	48Y	48Y	56Y	56Y
	High	48Y	48Y	56Y	56Y	56Y
Fan Rpm Range	Low	482-736	482-736	596-910	690-978	796-1128
	High	656-1001	796-1128	828-1173	929-1261	1150-1438
Motor Bearing Type	-	Ball	Ball	Ball	Ball	Ball
Maximum Fan Rpm		2000	2000	2000	2000	2000
Motor Pulley Pitch Diameter Range (in.)	Low	1.9-2.9	1.9-2.9	1.9-2.9	2.4-3.4	2.4-3.4
	High	1.9-2.9	2.4-3.4	2.4-3.4	2.8-3.8	4.0-5.0
Fan Pulley Pitch Diameter (in.)	Low	6.8	6.8	5.5	6.0	5.2
	High	5.0	5.2	5.0	5.2	6.0
Nominal Motor Shaft Diameter (in.)	Low	1/2	1/2	1/2	⁵ /8	5/8
	High	1/2	1/2	⁵ /8	⁵ /8	⁷ /8
BeltPitch Length (in.)	Low	49.3	49.3	49.3	49.3	49.3
Dalt Time	High	49.3	49.3	49.3	49.3	52.3
BeltType	Low	AX	AX	AX	AX	AX
Pulley Center Line Distance Min. (in.)	High Low	AX	AX	AX	AX	AX
i aney Center Line Distance Min. (In.)	Low High	16.2	16.2	16.2	16.2	16.2
Pulley Center Line Distance Max. (in.)	Low	16.2	16.2	16.2	16.2	16.2
- andy Genter Line Distance Wax. (III.)	High	20.2 20.2	20.2 20.2	20.2 20.2	20.2 20.2	20.2 20.2
Speed Change per Full Turn of	Low	48	48	20.2 59	58	20.2 66
Speed Change per Full Turn of Movable Pulley Flange (rpm)	High	48 65	62	69	66	58
Movable Pulley Maximum Full	Low	5	5	5	5	5
Turns from Closed Position	High	5	5	5	5	5
Factory Pulley Setting (rpm)	Low	482	482	596	690	796
	High	656	796	828	929	1150
Fan Shaft Diameter at Pulley (in.)		3/4	3/4	3/4	3/4	3/4
HIGH-PRESSURE SWITCH (psig)		-, .	-/ •	-/ •	-, .	-, ·
Cutout		660 ± 10	660 ± 10	660 ± 10	660 ± 10	660 ± 10
Reset (Auto.)		505 ± 20	505 ± 20	505 ± 20	505 ± 20	505 ± 20
RETURN-AIR FILTERS				Throwaway		
QuantitySize (in.)		416 x 20 x 2	416 x 20 x 2	416 x 20 x 2	416 x 20 x 2	416 x 20 x 2

LEGEND

TXV - Thermostatic Expansion Valve
*Aluminum evaporator coil/aluminum condenser coil.
† Single phase/three phase

Double Width Centrifugal Fan Catalog Supplement

- Air Performance
- Sound Performance
- Dimensional Data

٢

ò

Table of Contents

Engineering Data

Motor Selection
Model Number Code
Motor starting torque4
Wheel moments of inertia4
V Belt Drives
Fan RPM limitations (derating factors)
High temperature operating limits
Inlet vane performance
Inlet vane actuator torques
Effects of air density
Effect of installation on performance
Sound Performance Testing
Sample Fan Selection

Air and Sound Performance Data

Tabulated air performance	12 - 78
Fan curves and sound power ratings	13 - 79

Dimensional Data

Sizes 12-73 double width, arr. 3	
----------------------------------	--

Greenheck Fan Corporation certifies that the backward inclined and airfoil centrifugal fans shown herein are licensed to bear the AMCA Seal. The ratings shown are based on tests and procedures performed in accordance with AMCA Publication 211 and Publication 311 and comply with the requirements of the AMCA Certified Ratings Program.

Engineering Data

Motor Selection

Greenheck centrifugal fans can be supplied with any motor that is commercially available and is appropriate for the fan size and performance required. The table shows motor frame sizes corresponding to those motors readily available.

- Notes:
- 1. Fractional horsepower motor frame sizes shown may change due to variations in voltage, special features and manufacturer. 2. Motors shown are ball bearing, continuous duty. Two speed motors are two winding, 1/3 reduction in RPM. 3. Single phase motors are capacitor start.

			Si	ngle Sp	beed						SP /DG
		Open		т	E		Explosion Resistant		gh iency	Op	en
HP								Open	TE		
				115V		115V		230V	230V	115V	
	115V	230		230V		230V		460V	460V	1PH	
	1PH	1PH	3PH	1PH	3PH	1PH	3PH	3PH	3PH	1PH	3PH
1/4	48	48	48	48	48	48	48			48	
1/3	48	48	56	56	56	56	56			56	
1/2	56	56	56	56	56	56	56			56	
3/4	56	56	56	56	56	56	56			56	
1	56	56	143T	56	143T		56	143T	143T		56
1½	145T	145T	145T	145T	145T		145T	145T	145T		56
2	182T	182T	145T	182T	145T		145T	145T	145T		182T
3			182T		182T		182T	182T	182T		184T
5			184T		184T		184T	184T	184T		215T
7.5			213T		213T		213T	213T	213T		254T
10			215T		215T		215T	215T	215T		256T
15			254T		254T		254T	254T	254T		256T
20			256T		256T		256T	256T	256T		284T
25			284T		284T		284T	284T	284T		286T
30			286T		286T		286T	286T	286T		324T
40			324T		324T		324T	324T	324T		326T
50			326T		326T		326T	326T	326T		365T
60			364T		364T		364T	364T	364T		
75			365T		365T		365T	365T	365T		
100			405T		405T		405T	405T	405T		
125			405T		444T		444T	405T	444T		
150			444T		445T		445T	444T	445T		

1800 RPM Motors

3600 RPM Motors 3600 RPM motors are recommended for fan speed over 2700 RPM

· · · · · · · · · · · · · · · · · · ·												
			Sing	le Spee	d							
		Open		т	E		osion stant	High Efficiency				
HP								Open	TE			
				115V		115V		230V	230V			
	115V	230		230V		230V		460V	460V			
	1PH	1PH	3PH	1PH	3PH	1PH	3PH	3PH	3PH			
1/3	48	48			56							
1/2	48	48	56	56	56							
3/4	56	56	56	56	56							
1	56	56	56	56	56							
1½	143T	143T	143T	143T	143T		143T	143T	143T			
2	145T	145T	145T	145T	145T		145T	145T	145T			
3	182T	182T	145T	182T	182T		182T	145T	182T			
5		184T	182T	182T	184T		184T	182T	184T			
7.5		213T	184T	184T	213T		213T	184T	213T			
10		215T	213T	213T	215T		215T	213T	215T			
15			215T		254T		254T	215T	254T			
20			254T		256T		256T	254T	256T			
25			256T		284TS		284TS	256T	284TS			
30			284TS		286TS		286TS	284TS	286TS			
40			286TS		324TS		324TS	286TS	324TS			
50			324TS		326TS		326TS	324TS	326TS			

The model number codes on this page are a complete guide to ordering or specifiing Greenheck centifugal fan models.

Belt Drive Model Number Code

Motor Starting Torque

When selecting a motor for an industrial process fan, the motor must be capable not only of driving the fan at operating speed, but also must be capable of accelerating the fan wheel, shaft and drive to the operating speed.

The fan performance tables and curves in this catalog show the brake horsepower required to operate the fan once it is brought to speed. For applications requiring a large air volume at a low static pressure, the BHP required at the fan's operating RPM may not be sufficient to initially start the fan. If the time required to bring the fan to speed is excessive, the motor winding insulation can be damaged due to excessive temperature rise and the life of the motor seriously affected.

For a belt drive industrial process fan the required motor starting torque capability can be expressed by the following formula:

$$WR_{M}^{2} = WR_{F}^{2} \times \left(\frac{FRPM}{MRPM}\right)^{2} \times (1.1)$$

WR²_M = The moment of inertia that the motor must be capable of turning at the motor shaft, LB-Ft.²

 WR_F^2 = The moment of inertia of the fan wheel, LB-Ft.²

FRPM = Fan RPM

V Belt Drives

Constant Speed Drives

Advantages of constant speed drives include low vibration levels, ease of assembly and low cost. Fan speed changes can be accomplished in most cases simply by changing the motor pulley.

Constant speed drives are recommended over variable speed drives for applications that require motors 15 Hp and larger, and all applications requiring 3600 RPM motors.

Variable Speed Drives

Variable speed drives allow the fan speed to be changed by adjusting the pitch diameter of the motor pulley. The power to the fan must be off and locked out and the belts must be removed before manually adjusting the variable pitch pulley.

High Temperature Operating Limits

Temperature		Arrangement	Options Included
-20 to 180° F	Steel, Alum., SS	3	None

Moments of Inertia (Lb-Ft²)

Moments of inertia are shown for steel wheels. Aluminum wheels are one-third of the value shown.

Fan		ACKWARD RIFUGAL W		-	FEEL AIRFO RIFUGAL W	
Size	Class I	Class II	Class III	Class I	Class II	Class III
12	2.2	2.7	3.8	-	-	-
13	3.1	4.3	5.6	-	-	-
15	5.4	6.1	7.8	-	-	-
16	7.9	8.9	10.5	-	-	-
18	12.5	13.8	18.9	15.6	16.9	23.9
20	17.3	19.1	35.2	21.6	23.4	38.1
22	32.0	32.0	52.3	38.8	38.8	57.2
24	44.2	49.4	71.3	54.1	54.1	78.2
27	66.2	79.1	96.9	80.2	85.5	129
30	105	136	144	118	139	178
33	152	198	210	172	234	261
36	260	303	399	267	362	428
40	435	505	628	444	582	665
44	642	863	927	638	842	955
49	971	1310	1380	1130	1300	1450
54	1760	2120	2130	1700	2100	2430
60	2850	3480	3700	3210	3180	3530
66	4650	5070	5350	4590	4550	5290
73	6950	7570	7950	6860	6860	7860

Fan RPM Limitations

The maximum allowable wheel RPM shown on the fan performance pages are for fans of standard steel operating at 70°F. Since the strength of the fan wheel, shaft and bearings decrease with an increase in temperature, maximum allowable speeds must be reduced by the correction factors shown below.

RPM Correction Factors For High Temperatures									
Temperature	Wheel Material								
(Degrees F)	Aluminum	Steel	316 SS						
70	1.00	1.00	1.00						
200	1.00	.97	.92						

Inlet Vane Performance

As inlet vanes are closed they impart a spin to the airflow in the direction of wheel rotation and reduce airflow, static pressure and brake horsepower as shown in the graphs below. The graphs show how CFM, static pressure and brake horsepower are affected as inlet vanes are modulated from 100% open to 0% open in a typical variable air volume system. Graph 3 provides RPM and BHP correction factors for fans equipped with inlet vanes.

RPM & BHP Corrections

To compensate for pressure drop through inlet vanes, a percentage increase in fan RPM and BHP at full load design conditions must be applied.

Enter graph 3 with "% wide open volume" (see page 9 for calculation of % WOV) and the appropriate fan size.

Move horizontally left to the "% increase" scale. Record the % increase.

Increase the selected fan RPM by the % increase shown. Also increase the BHP by the % increase shown.

Use the chart below to determine minimum torque required for an inlet vane actuator.

Minimum Recommended Actuator Torque For Inlet Vanes (In-Lbs) for Double Width Fans

									Fan	Size									
Class	12	13	15	16	18	20	22	24	27	30	33	36	40	44	49	54	60	66	73
I	52	60	66	76	94	114	136	220	260	280	320	360	540	640	740	860	1000	1200	1400
Ш	76	86	98	116	146	176	220	320	360	400	460	520	840	980	1160	1360	1600	1920	2200
III	108	126	144	172	220	260	320	440	520	560	660	760	1240	1480	1760	2000	2400	3000	3400

Effect of Air Density - Temperature and Elevation

Ratings in the fan performance tables and curves of this catalog are based on standard air (clean, dry air with a density of .075 pounds per cubic foot, barometric pressure at sea level of 29.92 inches of mercury, temperature of 70°F.). Selecting a fan to operate at conditions other than standard air requires an adjustment to both static pressure and brake horsepower.

A cubic foot of air has a constant volume regardless of temperature or elevation. However, air density changes with non-standard temperature or elevation. Therefore, when selecting a fan to operate at a non-standard air density using standard air density tables and curves, corrections must be made to parameters affected by air density. These parameters are static pressure and brake horsepower.

For example, a size 30 BIDW centrifugal					Δ	IR D	ENSI	тү с	ORRI	ECTI	ON F	АСТС	DRS				
fan is to deliver	Air						Ele	vation	(Feet A	bove S	Sea Lev	vel)					
35,000 cfm at 4.5 inches static	°F	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000
pressure. Elevation is 4.000 feet.	0	0.87	0.90	0.94	0.97	1.01	1.05	1.08	1.13	1.17	1.22	1.26	1.31	1.37	1.43	1.48	1.54
temperature is 100°F.	50	0.96	1.00	1.04	1.08	1.11	1.15	1.20	1.24	1.30	1.34	1.40	1.45	1.51	1.57	1.63	1.70
The 15 inches static	70	1.00	1.04	1.08	1.12	1.16	1.22	1.25	1.30	1.35	1.40	1.45	1.51	1.57	1.64	1.70	1.77
The 4.5 inches static pressure refers to the	100	1.06	1.10	1.14	1.18	1.22	1.27	1.32	1.37	1.42	1.48	1.54	1.60	1.66	1.74	1.80	1.88
static pressure at the	150	1.15	1.19	1.24	1.30	1.33	1.38	1.44	1.49	1.55	1.61	1.67	1.74	1.81	1.89	1.96	2.04
operating air density, in this case at 4,000	200	1.25	1.29	1.34	1.40	1.44	1.50	1.56	1.61	1.68	1.75	1.81	1.89	1.96	2.05	2.13	2.21
feet, 100°F. Intuitively,	250	1.34	1.39	1.44	1.50	1.55	1.61	1.67	1.74	1.80	1.88	1.95	2.02	2.10	2.20	2.28	2.37
we realize that at	300	1.43	1.49	1.54	1.60	1.66	1.72	1.79	1.86	1.93	2.01	2.08	2.16	2.25	2.35	2.43	2.53
higher than standard elevations and	350	1.53	1.58	1.64	1.71	1.77	1.84	1.91	1.98	2.06	2.14	2.22	2.31	2.40	2.51	2.60	2.71
temperatures, air	400	1.62	1.68	1.75	1.81	1.88	1.94	2.03	2.09	2.19	2.27	2.37	2.45	2.54	2.66	2.75	2.87
density will be lower than standard.	500	1.81	1.88	1.95	2.02	2.10	2.18	2.26	2.35	2.44	2.54	2.63	2.73	2.84	2.97	3.08	3.20
Therefore, we must	600	2.00	2.07	2.15	2.23	2.31	2.40	2.50	2.59	2.69	2.84	2.91	3.02	3.14	3.28	3.40	3.54
determine what static	700	2.19	2.27	2.35	2.44	2.53	2.63	2.73	2.83	2.94	3.07	3.17	3.31	3.44	3.59	3.72	3.88
pressure at standard air density will equate	800	2.38	2.48	2.57	2.67	2.76	2.86	2.98	3.09	3.21	3.33	3.45	3.59	3.74	3.90	4.05	4.21
to 4.5 inches static	900	2.56	2.66	2.76	2.87	2.97	3.07	3.20	3.33	3.46	3.58	3.71	3.87	4.02	4.20	4.35	4.53
pressure at our operating density.	1000	2.76	2.87	2.989	3.09	3.20	3.31	3.45	3.59	3.73	3.86	4.00	4.17	4.33	4.53	4.69	4.89

Since standard air

density is greater than operating air density in this case, we would expect the corrected static pressure to be greater than the operating static pressure.

The accompanying table gives air density correction factors for non-standard temperatures and elevations.

The example below shows the relationship of fan performance at sea level and at 4,000 ft. elevation and 100°F.

EXAMPLE

The following example shows how to properly select the fan described above:

- Since the air volume delivered by the fan is not affected 1. by density, airflow remains 35,000 cfm.
- 2. Determine correction factor from chart for an elevation of 4,000 feet and air temperature of 100°F. The correction factor is 1.22.
- 3. Multiply the specified operating static pressure by the correction factor to determine the standard air density equivalent static pressure (Corrected static pressure = 4.5 in. x 1.22 = 5.5 in. static pressure).
- Refer to the fan performance table for a 30 BIDW. At 4. 35,000 cfm and 5.5 in. static pressure: Fan rpm = 1521, Bhp = 51.5.
- 5. 1571 Fan rpm is required to produce the desired performance.
- 6. Since the horsepower selected refers to standard air density, this must be corrected to reflect actual Bhp at the lighter operating air. Operating Bhp = standard Bhp \div 1.22, or 51.5 \div 1.22 = 42.2 Bhp.

If a fan is selected to operate at high temperatures, the motor must be of sufficient horsepower to handle the increased load at any lower operating temperature where the air is more dense. Assume the air entering the 30 BIDW fan at start-up is 0°F. For 0°F and 4,000 feet elevation the air density correction factor is 0.97. Bhp at $0^{\circ}F = 51.5 \div 0.97 = 53.9$, therefore, a 60 hp motor is required.

Sea Level, 70 - Static Pressure

- - - - Sea Level. 70 - Bhp

Effect Of Installation On Performance

Ratings presented in the performance tables and curves of this catalog were derived from tests made in accordance with AMCA Standard 210 – "Laboratory Methods of Testing Fans for Ratings." The AMCA test procedure utilizes an open inlet and a straight outlet duct to assure maximum static regain.

Any installation with inlet or discharge configurations that deviate from this standard may result in reduced fan performance. Restricted or unstable flow at the fan inlet can cause pre-rotation of incoming air or uneven loading of the fan wheel yielding large system losses and increased sound levels. Free discharge or turbulent flow in the discharge ductwork will also result in system effect losses.

Static pressure losses due to inlet and discharge conditions can be expressed in terms of system effect factors. The static pressure for selection of the fans equals the system static pressure plus the system effect factor.

Some common inlet and discharge conditions which affect fan performance are:

NON-DUCTED INLET CLEARANCE

Installation of a fan with an open inlet too close to a wall or bulkhead will cause reduced fan performance. It is desirable to have one fan wheel diameter if possible and a minimum of three fourths of a wheel diameter between the fan inlet and the wall. System effect curve #2 depicts the pressure loss for one-half wheel diameter clearance.

FREE DISCHARGE

Free or abrupt discharge into a plenum results in a reduction in fan performance. The effect of static regain in discharge is not realized. System effect curve #1 depicts the pressure loss for free or abrupt discharge.

Duct turns located near the fan discharge should always be in the direction of the fan rotation.

Fan performance is reduced when duct turns are made immediately off the fan discharge. To achieve cataloged fan performance there should be at least three equivalent duct diameters of straight ductwork between the fan discharge and any duct turns. Curve #3 shows the system effect factor for two diameters of straight ductwork and curve #1 for one diameter.

SYSTEM EFFECT FACTOR CURVES

Additional information on system effect factors can be found in AMCA Publication 201 – "Fans and Systems" and ASHRAE Handbooks.

Sound Performance Data

AMCA Licensed Ratings

Sound tests of Model BIDW and AFDW were conducted in Greenheck's AMCA Registered sound laboratory in accordance with AMCA Standard 300. Inlet and outlet sound ratings comply with AMCA Publication 311, qualifying these models to bear the AMCA seal for sound and air performance. The sound power levels published here can be compared directly with those of other similarly rated fans, or used as a baseline to determine sound levels in occupied spaces.

The sound data in this brochure is the result of extensive testing, which included both inlet and outlet sound tests on double width centrifugal fans. Typically, fan manufacturers publish only inlet sound for double width fans. The assumption they make is that outlet sound is identical to inlet sound. Sound data based on this assumption is simply not accurate enough for today's sound sensitive installations. This assumption also ignores duct end corrections for outlet sound.

Test Methods

AMCA standard 300 clearly defines methods used to test fans in a reverberant sound test room. The reverberant room is specifically designed to allow sound waves to be dispersed evenly throughout the room. The walls have a hard surface that reflects sound and are positioned to prevent resonances which could result in quiet areas within the room.

Sound power cannot be directly measured. The test method is based on a Reference Sound Source (RSS) substitution for determining fan sound power. The RSS is a laboratory calibrated device which has a known sound power output level. The test fan is installed as shown below. The RSS is energized and the sound pressure levels in the reverberant room are recorded. The fan is then operated without the RSS and the fan sound pressure levels are recorded for various points of operation. Since the sound power levels of the RSS are known, the substitution method is used to determine the sound power levels of the fan. This method is illustrated in the following example.

Octave Band	1	2	3	4	5	6	7	8	
Center Frequency (Hz)	63	125	250	500	1000	2000	4000	8000	
Calibrated RSS Sound Power (Lwr)	82	81	81	81	81	81	79	78	
Measured RSS Sound Pressure (Lpq)	70	74	75	76	75	74	69	61	Units in
Difference (Lwr-Lpq)	12	7	6	5	6	7	10	17	dB
Measured Fan Sound Pressure (Lpm)	68	72	69	69	68	62	57	46	
Substitution (Lwr-Lpq, from above)	+12	+7	+6	+5	+6	+7	+10	+17	
Fan Sound Power (Lw)	80	79	75	74	74	69	67	63	

Calculating Fan Sound Power

Test Setups

The illustrations at right show where the sound levels were measured with respect to the fan. Inlet sound was tested as in Figure 2 of Standard 300 and outlet sound was tested as in Figure 3. Inlet and outlet sound were determined in the same inlet and outlet configurations as the air tests. (Installation Type B - free inlet, ducted outlet.)

Since double width fans are more often ducted at the inlet, they are tested only for sound radiated from the fan inlet.

AMCA Standard 300 - Figure 2: Fan Inlet Sound Testing Installation Type B: Free Inlet, Ducted Outlet

SINGLE WIDTH

AMCA Standard 300 - Figure 3: Fan Outlet Sound Testing Installation Type B: Free Inlet, Ducted Outlet (Ratings include the effects of duct end correction)

Interpreting Sound Data

Sound power levels in this brochure are presented as dB (re 10⁻¹² watts) in each of the eight full octave bands with center frequencies from 63 Hz to 8000 Hz. They are also presented as a single A-weighted sound power level, LwA. Charts are provided covering the full range of fan speeds and percent wide open volume (%WOV) for each fan size. Outlet sound power data is based on a ducted outlet and therefore includes duct end reflection corrections.

Outlet Sound - Duct End Corrections

This correction accounts for sound that is reflected back into the duct where there is an abrupt termination of the duct.

AMCA Standard 300 requires that outlet sound power for fans with ducted outlets include Duct End Corrections. These corrections account for any sound power that may be present in the duct but is not measured in the reverberant room, because it is reflected back into the duct at the discharge.

Duct end corrections are included in all outlet sound power ratings.

Duct End Corrections (dB)

Size	Do	ouble Width I	ans
0.20	63 Hz	125 Hz	250 Hz
18	9	5	2
20	9	4	1
22	8	4	1
24	7	3	
27	6	3	
30	6	2	
33	5	2	
36	5	2	
40	4	1	
44	4	1	
49	3		
54	3		
60	2		
66	2		
73	2		

Tolerance and Application

The certification process in AMCA Standard 311 call for a precertification test to verify original test results. Check tests are also required every 3 years for each model licensed. Test data must agree with the published sound power within the following tolerance levels:

Octave Band	1	2	3	4	5	6	7	8
Center Frequency (Hz)	63	125	250	500	1000	2000	4000	8000
Tolerance	+6	+3	+3	+3	+3	+3	+3	+3

These tolerance levels are a good indication of the variance that could occur from one fan or test setup to another. Once installed, however, there are many other factors that can affect the sound power generated by a fan.

The lower frequencies (below 125 Hz) are greatly affected by vibration. Fan wheel balance, motor balance, drive alignment, etc., all affect the vibration level of the fan and can increase sound power in the 1st and 2nd octaves. When ducts are not properly isolated from the fan, these vibrations can be transmitted into the ducts, which can generate additional low frequency sound.

Sound power generated by a fan can also be influenced by system effects. System effects are pressure losses caused by inlet or outlet restrictions, or other conditions causing non-uniform airflow at the inlet or discharge of a fan (see AMCA publication 201). Examples include inlet or outlet elbows too close to a fan, restricted inlets, and fan accessories. While system effects can prevent fans from reaching their designed air performance, they can also result in increased sound power levels. Typically, system effects cause pressure fluctuations which influence the lower frequencies. Poor inlet conditions can also greatly increase sound levels at the blade passage frequency (BPF). The blade passage frequency refers to how often a blade or wheel fin passes a stationary location of the housing and can be calculated using the following equation:

BPF (Hz) = $\frac{\text{Fan RPM x Number of Blades}}{60}$ (All Greenheck wheels have 9 blades)

Sound is becoming increasingly critical for most fan installations. Greenheck employs extensive research and testing to provide sound data that is as thorough and accurate as possible. However, sound pressure levels in occupied spaces are affected by the acoustical qualities of the space, distance from source to receiver, etc. Therefore, published sound power data can be used only as a baseline for determining the resulting sound pressure levels an occupant hears. While Greenheck provides products which meet published sound power levels, no manufacturer can be responsible for poor installations or system designs beyond their control. For further information on installation practices, see AMCA publication 201, "Fans and Systems."

Sound Power

Sound power data is charted for the full range of RPM and percent wide open volume (% WOV) for belt drive and RPM and static pressure for direct drive in each unit size.

The % WOV is a convenient way to indicate the operating point (pressure and CFM) for a given fan RPM. To calculate the % WOV for a given fan size, use the equation given on the performance page.

$\% \text{ WOV } = \frac{\text{CFM x 100}}{\text{RPM x K}}$

Use the following procedure to calculate sound data for a specific Fan RPM and % WOV:

1. Determine the eight sound power levels for the specified % WOV using the higher Fan RPM shown.

2. Determine the eight sound power levels for the specified % WOV using the lower Fan RPM shown.

3. Interpolate between the higher and lower sound power levels using the specified RPM.

Sample Fan Selection

The purpose of these two pages is to demonstrate the manual centrifugal fan selection process. These pages also contain helpful tips to check your fan selection as well as a step by step set of instructions on how to use this manual to properly select a centrifugal fan.

An important point to remember when manually selecting a centrifugal fan is that more than one fan is available to meet the desired performance (CFM and Ps). Selection criteria such as unit size, efficiency, speed, outlet velocity, horsepower, or construction material may also dictate which fan is chosen.

Sound and Air performance are identical for Greenheck Series 21 and 41 Centrifugal fans.

> CFM ov

3000 724 489

3800 917 561

4600 1111 639

5400 1304 720

6200 1497 803

7000

7800 1884

CFM ov

7800

8600

9400

1690

8600 2077 1061 9400 2270 1149

10200 2463 1238

11800 2850 1419

2600 3043 1509

13400 3236 1600

14200 3429 1691

15000 3623 1782

7000 1690 1348

10200 2463 1609

11000 2657 1680

11800 2850 1755

12600 3043 1831

3400 3236 1908

14200 3429 1987

15000 3623 2067

15800 3816 2148

16600 4009 2229

17400 4202 2312

18200 4396 2395

19000 4500 2470

9000 2173 2130

9900 2391 2170

10800 2608 2211

11700 2826 2255

12600 3043 2323

13500 3260 2392

14400 3478 2463

15300 3695 2538

16200 3913 2616

17100 4130 2695

18000 4347 2775

18900 4565 2857

19800 4782 2942

20700 5000 3028

21600 5217 3114

22500 5434 3201

27.8 2581

30.6 2658

33.6 2737

36.9 2816 40.3 2897

44.1 2980

48.1 3065

52.3 3150

Power rating (BHP) does not include drive losses.

56.9

29.2 2625 30.6 2669

32.1 2699 33.5

35.1

38.4 2856 40.0 2896

42.0

45.8 3017 47.5 3055

49.8 3101 51.6 3137

54.2 3186 56.0

2777 36.6

2936 43.6 2975

Performance ratings do not include the effects of appurtenances in the airstream.

CFM ov

1884 1409

2077 1471

2270 1539

11000 2657

888

974

1328

20 BIDW

The following example explains the model number code for both series of centrifugal fans.

A The Outlet Area is used for the Outlet Velocity (OV) calculation. OV = CFMOA

- B The Maximum BHP can be calculated for a given fan RPM along the fan curve.
- С The minimum starting HP is determined by the inertia (WR²) of the fan and motor. See page 4 for a complete motor starting torque chart.
- D The maximum fan RPM for each fan class is listed.
- E Constant HP curves are plotted for each motor HP size.
- F The % WOV is used to identify the fan operating point. The lines in the fan curve or the equation can be used.

	REENHECK
0	The Solution Company

45.4 3129 49.0

48.4 3170 51.8

3160 52.2

Performance shown is for model BIDW arrangement 3, installation type B - free inlet, ducted outlet.

32.0 2712

34.9 2782

38.1 2856

41.6 2934

45.2 3013

49.2 3092

53.4 3173

2740

2817

33.4 2795

36.4 2864

39.7 2935 42.7 3013 45.9 3088 49.0

43.1 3008

46.9 3086

50.9 3165 54.3

55.1

36.2 2874

39.4 2943

46.3 3083

50.2 3157

39.1 2951 42.0 3040

42.4 3019 45.4 3092

49.6 3158 52.9

53.6

Fan Selection Procedure

STEP 1

Enter the performance table with the desired CFM and Ps. Obtain the fan RPM, BHP and Class.

EXAMPLE

For this example, we will use 13,400 cfm at 2.0 Ps. This gives us a fan RPM of 1,847, requiring 10.9 Bhp, with Class I construction.

NOTE: If your specific fan selection requires inlet vanes or if the fan operating point is not at standard air (70°C), refer to the inlet vane and air density correction factor tables found on pages 5 and 6.

STEP 2

Enter the Fan Curve with the desired CFM and Ps. Obtain the fan operating point, % WOV, Motor HP and verify fan class by curve shading.

EXAMPLE

For this example, the fan operating point is at 85% WOV using a 15 hp motor.

The sound power level ratings shown are in decibels, referred to 10⁺² watts calculated per AMCA Standard 301. Values shown are for inlet Lwi, LwiA and outlet Lwo, LwoA sound power levels for Installation Type B: free inlet, ducted outlet. Outlet ratings include the effects of duct and correction.

20 BIDW

Whee	l Dia	mete	r = 20) in.											
Outle	t Are	a = 4	.14 ft	2		Ma	aximu	ım RF	PM CI	ass I	= 196	60			
Tip S	peed	= 5.2	24 x F	RPM		Maximum RPM Class II = 2554									
Maxir	num	BHP	= (RI	PM/8	32)³	Maximum RPM Class III = 3219									
								St	atic F	ress	ure Ir	n Ind			
CFM	ον	0.:	25	0.	50	0.75 1.00 1.25									
		RPM	BHP	RPM	BHP	RPM	RPM BHP RPM BHP RPM B								

Minimum Motor Size For Starting Torque: ¾ HP

								Sta	atic F	ress	ure Ir	Inch	es								
CFM	ov	0.2	25	0.	50	0.7	75	1.0	00	1.:	25	1.	50	1.3	75	2.0	00	2.	25	2.	50
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
3000	724	489	0.20	596	0.34	699	0.52														
3800	917	561	0.31	654	0.47	736	0.65	823	0.87	900	1.11	977	1.37								
4600	1111	639	0.45	723	0.65	797	0.85	865	1.07	936	1.31	1005	1.59	1069	1.87	1132	2.17				
5400	1304	720	0.65	796	0.87	864	1.11	927	1.35	987	1.60	1042	1.85	1105	2.16	1165	2.48	1221	2.81	1274	3.14
6200	1497	803	0.89	874	1.16	936	1.42	995	1.69	1050	1.96	1103	2.25	1154	2.54	1201	2.83	1257	3.19	1310	3.55
7000	1690	888	1.19	954	1.50	1012	1.80	1066	2.10	1119	2.40	1167	2.71	1215	3.03	1262	3.35	1306	3.67	1348	4.00
7800	1884	974	1.57	1035	1.92	1090	2.25	1142	2.58	1190	2.91	1237	3.25	1282	3.59	1324	3.94	1367	4.30	1409	4.66
8600	2077	1061	2.02	1119	2.41	1171	2.78	1219	3.14	1265	3.51	1309	3.87	1352	4.25	1393	4.62	1432	5.00	1471	5.39
9400	2270	1149	2.56	1203	2.98	1252	3.39	1298	3.79	1342	4.19	1384	4.59	1424	4.99	1463	5.40	1502	5.81	1539	6.22
10200	2463	1238	3.19	1288	3.64	1335	4.10	1379	4.54	1421	4.97	1461	5.41	1499	5.84	1536	6.27	1573	6.71	1609	7.15
11000	2657	1328	3.93	1374	4.41	1419	4.90	1461	5.39	1501	5.85	1539	6.32	1576	6.79	1612	7.26	1646	7.72	1680	8.20
11800	2850	1419	4.77	1461	5.28	1504	5.81	1544	6.34	1583	6.85	1619	7.35	1655	7.85	1689	8.36	1722	8.85	1755	9.35
12600	3043	1509	5.74	1548	6.27	1589	6.83	1628	7.40	1665	7.96	1700	8.50	1734	9.03	1767	9.57	1800	10.1	1831	10.6
13400	3236	1600	6.83	1637	7.39	1675	7.98	1712	8.58	1748	9.19	1782	9.77	1815	10.3	1847	10.9	1878	11.5	1908	12.1
14200			8.05	1726	8.65	1762	9.27	1797	9.90	1832	10.5	1865	11.2	1897	11.8	1928	12.4	1958	13.0	1987	13.6
15000	3623	1782	9.41	1816	10.1	1849	10.7	1883	11.4	1916	12.0	1949	12.7	1980	13.4	2010	14.0	2039	14.7	2067	15.3

								Sta	atic F	ress	ure Ir	Inch	es								
CFM	ov	2.	50	3.	00	3.	50	4.	00	4.	50	5.0	00	5.	50	6.0	00	6.	50	7.	00
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
7000	1690	1348	4.00	1444	4.80	1534	5.63	1619	6.49	1700	7.39	1786	8.38								
7800	1884	1409	4.66	1486	5.39	1571	6.23	1655	7.15	1734	8.09	1809	9.05	1881	10.0	1959	11.1				
8600	2077	1471	5.39	1547	6.18	1619	6.98	1692	7.85	1770	8.85	1845	9.86	1916	10.9	1984	12.0	2049	13.0	2119	14.2
9400	2270	1539	6.22	1610	7.06	1680	7.92	1746	8.80	1809	9.68	1881	10.7	1952	11.8	2020	12.9	2085	14.1	2148	15.2
10200	2463	1609	7.15	1677	8.05	1743	8.96	1808	9.89	1870	10.8	1929	11.8	1989	12.8	2056	14.0	2121	15.2	2184	16.4
11000	2657	1680	8.20	1747	9.15	1810	10.1	1871	11.1	1932	121.0	1990	13.1	2046	14.1	2100	15.2	2158	16.3	2220	17.6
11800	2850	1755	9.35	1818	10.4	1880	11.4	1938	12.4	1995	13.5	2052	14.6	2108	15.6	2161	16.7	2212	17.8	2262	19.0
12600	3043	1831	10.6	1892	11.7	1951	12.8	2008	13.9	2063	150.0	2116	16.1	2170	17.3	2223	18.4	2274	19.6	2323	20.7
13400	3236	1908	12.1	1967	13.2	2023	14.3	2079	15.5	2133	167.0	2185	17.8	2235	19.0	2285	20.2	2336	21.4	2384	22.7
14200	3429	1987	13.6	2044	14.8	2099	16.0	2152	17.2	2204	185.0	2255	19.7	2305	20.9	2352	22.2	2399	23.4	2447	24.7
15000	3623	2067	15.3	2122	16.6	2175	17.8	2227	19.1	2276	204.0	2326	21.7	2375	23.0	2422	24.3	2467	25.6	2512	27.0
15800	3816	2148	17.1	2201	18.5	2253	19.8	2303	21.2	2352	225.0	2398	23.9	2446	25.2	2492	26.6	2537	28.0	2581	29.4
16600	4009	2229	19.1	2281	20.5	2331	22.0	2380	23.4	2428	24.8	2474	26.2	2518	27.6	2564	29.0	2608	30.5	2651	31.9
17400	4202	2312	21.3	2362	22.8	2411	24.3	2458	25.8	2505	27.2	2550	28.7	2593	30.2	2636	31.7	2679	33.2	2722	34.7
18200	4396	2395	23.7	2444	25.2	2491	26.8	2538	28.3	2582	29.9	2626	31.4	2669	32.9	2711	34.5	2752	36.0	2793	37.6
19000	4500	2470	26.1	2526	27.8	2573	29.4	2618	31.0	2661	32.7	2704	34.3	2746	35.9	2787	37.5	2827	39.1	2867	40.7

								Sta	atic F	ress	ure Ir	Inch	es								
CFM	ov	7.0	00	7.	50	8.	00	8.	50	9.	00	10.	00	11.	.00	12.	00	13	.00	14	.00
		RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP	RPM	BHP
9000	2173	2130	14.7	2195	15.9	2262	17.1														
9900	2391	2170	15.9	2231	17.1	2289	18.4	2346	19.6	2405	20.9	2526	23.7								
10800	2608	2211	17.3	2272	18.5	2330	19.8	2387	21.1	2442	22.4	2548	25.1	2656	28.0	2766	31.1				
11700	2826	2255	18.7	2313	20.0	2371	21.4	2428	22.7	2482	24.1	2588	26.9	2689	29.8	2785	32.7	2887	35.9	2988	39.2
12600	3043	2323	20.7	2371	21.9	2417	23.1	2469	24.4	2524	25.9	2629	28.8	2729	31.8	2825	34.9	2918	38.0	3006	41.1
13500	3260	2392	22.9	2440	24.2	2486	25.4	2530	26.7	2574	28.0	2670	30.8	2770	33.9	2866	37.1	2958	40.4	3047	43.6
14400	3478	2463	25.3	2509	26.6	2555	27.9	2599	29.2	2643	30.6	2726	33.3	2812	36.2	2907	39.5	2999	42.8	3087	46.2
15300	3695	2538	27.8	2581	29.2	2625	30.6	2669	32.0	2712	33.4	2795	36.2	2874	39.1	2951	42.0	3040	45.4	3129	49.0
16200	3913	2616	30.6	2658	32.1	2699	33.5	2740	34.9	2782	36.4	2864	39.4	2943	42.4	3019	45.4	3092	48.4	3170	51.8
17100	4130	2695	33.6	2737	35.1	2777	36.6	2817	38.1	2856	39.7	2935	42.7	3013	45.9	3088	49.0	3160	52.2		
18000	4347	2775	36.9	2816	38.4	2856	40.0	2896	41.6	2934	43.1	3008	46.3	3083	49.6	3158	52.9				
18900	4565	2857	40.3	2897	42.0	2936	43.6	2975	45.2	3013	46.9	3086	50.2	3157	53.6						
19800	4782	2942	44.1	2980	45.8	3017	47.5	3055	49.2	3092	50.9	3165	54.3								
20700	5000	3028	48.1	3065	49.8	3101	51.6	3137	53.4	3173	55.1										
21600	5217	3114	52.3	3150	54.2	3186	56.0														
22500	5434	3201	56.9																		

Performance shown is for model BIDW arrangement 3, installation type B - free inlet, ducted outlet.

Performance ratings do not include the effects of appurtenances in the airstream. Power rating (BHP) does not include drive losses.

20 BIDW

% WOV = (CFM X 100) / (RPM X 8.58)

Sound Power [dB Ref 10⁻¹² watts]

		Ir	nlet S	ound	Pow	er, Lv	vi							Ou	tlet S	Sound	d Pow	ver, L	wo			
RPM	%WOV	1	2	3	4	5	6	7	8	LwiA		RPM	%WOV	1	2	3	4	5	6	7	8	LwoA
550	100	78	75	74	78	68	62	56	52	76		550	100	90	78	75	68	67	59	52	47	73
	80	76	73	71	75	67	60	54	50	74			80	90	77	71	64	64	54	47	45	70
	60	75	70	70	76	67	60	54	50	74			60	83	74	68	63	62	54	48	45	67
	50	75	69	69	76	67	60	54	50	75			50	82	73	67	63	63	54	48	45	67
	40	74	69	69	77	67	60	54	50	75			40	82	73	67	63	63	54	48	46	67
800	100	79	91	83	82	76	72	64	60	83		800	100	93	96	83	77	77	71	63	57	84
	80	80	89	81	78	72	67	59	54	80			80	90	92	81	73	72	64	57	52	80
	60	77	83	76	77	71	67	59	54	77			60	87	84	76	72	69	63	57	53	75
	50	76	80	74	76	71	67	60	55	77			50	87	82	74	72	68	62	57	54	74
	40	77	78	74	76	71	67	60	55	77			40	89	83	73	71	68	62	57	54	74
1100	100	85	92	91	89	85	81	74	70	90		1100	100	99	93	90	86	86	80	74	67	90
	80	84	88	88	87	81	77	69	65	87			80	96	92	88	83	81	74	67	61	86
	60	83	84	83	83	79	76	70	65	85			60	91	87	83	78	77	71	66	61	82
	50	80	83	82	83	79	76	70	66	84			50	91	86	82	77	76	71	66	62	81
1000	40	80	83	82	83	78	75	70	66	84 97	-	1000	40	92	86	81	76	75	70	66	62	80
1600	100	91 00	94	98	95 00	92	89	83	78 75	97 95		1600	100	105	98 05	98	94	93	89	85	77 73	98 96
	80 60	88 87	91 88	96 93	93 89	90 86	86 83	80 78	75 75	95 92			80 60	102 100	95 91	96 93	91 87	92 87	87 83	81 77	73	96 92
	50	87	88	93 91	88	85	82	78	75	92 91			50	100	92	93 92	86	86	81	76	72	92 91
	40	89	88	90	87	85	82	78	76	90			40	100	93	92 92	85	84	81	76	72	90
2200	100	98	100	103	105	98	96	91	88	105	F	2200	100	109	105	106	109	102	97	93	88	109
	80	95	97	100	103	96	92	87	84	102			80	107	101	101	105	98	93	89	83	105
	60	92	93	98	99	93	91	87	84	100			60	103	97	96	99	96	91	86	81	100
	50	93	93	98	97	93	90	87	84	99			50	104	98	95	97	94	89	85	81	99
	40	95	95	98	98	92	90	88	86	99			40	107	100	95	95	92	89	85	81	98
3219	100	105	109	110	114	110	106	102	98	115	F	3219	100	117	115	113	118	114	108	104	99	118
	80	103	106	107	111	107	102	98	94	112			80	115	112	109	113	110	104	100	94	114
	60	100	102	105	107	104	101	97	94	109			60	111	108	105	107	106	102	97	92	110
	50	101	103	105	105	103	100	97	94	108			50	112	109	104	105	104	100	96	92	108
	40	103	105	106	106	103	99	98	96	108			40	116	112	106	103	102	99	95	92	107

The sound power level ratings shown are in decibels, referred to 10⁻¹² watts calculated per AMCA Standard 301. Values shown are for inlet Lwi, LwiA and outlet Lwo, LwoA sound power levels for Installation Type B: free inlet, ducted outlet. Outlet ratings include the effects of duct end correction.